
The RWTH SunFire SMP-Cluster

User’s Guide, Version 3.2
September 2003

Dieter an Mey, Center for Computing and Communication, Aachen University
(Rechen- und Kommunikationszentrum der RWTH Aachen)

anmey@rz.rwth-aachen.de

Ruud van der Pas, Application Performance Specialist, Sun Microsystems
ruud.vanderpas@sun.com

Eugene Loh, High-End Software, Sun Microsystems
eugene.loh@sun.com

Table of Contents
1 Introduction..5
2 Hardware..6

2.1 Configuration RWTH...6
2.2 Processors...7
2.3 Memory..8
2.4 Network RWTH...9

3 Operating System...10
3.1 Addressing Modes..11
3.2 Batch Job Administration RWTH..11
3.3 Defaults of the User Environment RWTH...15
3.4 User File Management RWTH..16

4 Programming/Tuning...17
4.1 Sun Compilers..17
4.2 The KCC C++ Compiler by KAI RWTH...21
4.3 Interval Arithmetic...21
4.4 Tuning Tips..21
4.5 Time measurements...23
4.6 Hardware Performance Counters...23

5 Parallelization..25
5.1 Message passing with MPI..25
5.1.1 Sun MPI...25

5.1.1.1 Placing the MPI-Tasks with mprun..26
5.1.1.2 Input and output control with mprun..26
5.1.1.3 Handling MPI program runs...27
5.1.1.4 Sun MPI environment variables...27

5.1.2 mpich RWTH..28
5.2 Shared memory programming with OpenMP..28
5.2.1 Sun-OpenMP...29
5.2.2 KAP/Pro Toolset RWTH...30
5.2.3 Automatic shared memory parallelization of loops...31

5.4 Hybrid Parallelization..32
6 Debugging..33

6.1 Static program analysis..33
6.2 Dynamic program analysis...33
6.3 Debuggers..34
6.3.1 dbx...35
6.3.2 Prism..36
6.3.3 TotalView..36

6.3.3.1 Invocation of TotalView for serial programs...36
6.3.3.2 Debugging of Sun-MPI programs RWTH..36
6.3.3.3 Debugging of OpenMP-programs..37

7 Programming tools...38
7.1 Sampling Collector and Performance Analyzer...38
7.1.1 The Collector...38
7.1.2 The Performance Analyzer..40
7.1.3 The Performance Tools Collector Library API...40

7.2 Frequency analysis with tcov...41
7.3 Run time analysis with gprof ..41
7.4 Run time analysis of MPI programs...41
7.4.1 Sampling Collector and Performance Analyzer..41
7.4.2 Prism..42
7.4.3 Vampir and VampirTrace RWTH...42
7.4.4 Jumpshot and the MPE Library...42

8 Application software..44
8.1 Application software and program libraries RWTH..44
8.2 The Sun Performance Library..44
8.3 The Sun S3L library...44
8.4 Nag Numerical Libraries RWTH...45

9 Further information..46
9.1 Sun products...46
9.2 Third party products...47
9.3 Public domain software..47
9.4 Problems and inquiries...47

10 Miscellaneous..47
10.1 Other Useful commands...47

11 Appendix: Debugging with TotalView on the Sun Fire SMP-Cluster - Quick Reference
Guide...48

11.1 Debugging serial programs..48
11.1.1 Some general hints for using TotalView...48
11.1.2 Compiling and Linking..48
11.1.3 Starting TotalView..48
11.1.4 Setting a breakpoint...49
11.1.5 Starting, Stopping and Restarting your program...49
11.1.6 Printing a variable...49
11.1.7 Action Points: breakpoints, evaluation points, watchpoints....................................49

11.2 Debugging parallel programs...50
11.2.1 Some general hints for parallel debugging..50
11.2.2 Debugging MPI programs...50

11.2.2.1 Starting TotalView...50
11.2.2.2 Setting a breakpoint..50
11.2.2.3 Starting, Stopping and Restarting your program..51
11.2.2.4 Printing a variable..51
11.2.2.5 Message Queues...51

11.2.3 Debugging OpenMP programs..51
11.2.3.1 Some general hints for debugging OpenMP programs....................................51
11.2.3.2 Compiling...51
11.2.3.3 Starting TotalView...51
11.2.3.4 Setting a breakpoint..52
11.2.3.5 Starting, Stopping and Restarting your program..52
11.2.3.6 Printing a variable..52

1 Introduction
This primer gives you a quick start in using the new Sun Fire SMP-Cluster at the
Aachen University. It describes the hardware architecture, selected aspects of the
operating environment, a few software tools, and helpful references for further
information. The software tools include:

• The Sun ONE Studio 8 Development Tools NEW

• Sun HPC ClusterTools Version 5.0, Sun’s MPI implementation and
environment now fully supports MPI version 2. NEW

• TotalView Version 6.3, Etnus’ latest parallel debugger version now supports
Sun's latest compilers and the debugging of programs using the 64 bit addressing
mode. Debugging MPI programs has also been considerably improved with the HPC
ClusterTools Version 5.0. Debugging of OpenMP programs is possible in
combination with the KAP/Pro Toolset's Guide compilers. NEW

• VampirTrace Version 3.0 and Vampir Version 3.0, Pallas’ tools for runtime
analysis of MPI programs work well with HPC ClusterTools Version 5.0. (MPI2 is
not yet fully supported) NEW

• KAP/Pro Toolset Version 4.0, KAI's OpenMP tools including

• the KCC C++ Compiler Version 4.0 which is part of the KAP/Pro Toolset

• some details about the Solaris 9 operating system (It will successively be
installed on all the Sun Fire systems and particularly effects the runtime behaviour
of the Sun Fire 15 K systems RWTH)
Site-specific sections are marked with RWTH.

Please check our web pages for more up-to-date information and the latest version of
this document:

http://www.rz.rwth-aachen.de/hpc/
http://www.rz.rwth-aachen.de/computing/info/sun/primer/

For interactive access to the cluster, login to
cluster-sun.rz.RWTH-Aachen.DE

Please join the rzcluster mailing list, if you want to be informed on a regular
basis:

http://MailMan.RWTH-Aachen.DE/mailman/listinfo/rzcluster
Do not hesitate to send criticisms or suggestions to

hpc@rz.rwth-aachen.de
Have fun using the new Sun Fire SMP-Cluster!

4 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

2 Hardware

2.1 Configuration RWTH
The Sun SMP-Cluster currently consists of
• 16 Sun Fire 6800 nodes with 24 UltraSPARC-III Cu processors and 24 GB of

shared memory each and of
• 4 Sun Fire 15K nodes with 72 UltraSPARC-III Cu processors and 144 GB of

shared memory each.
All 672 CPUs have a 900 MHz clock cycles with an accumulated peak performance
of 1,2 TFlop/s and a total main memory capacity of 960 GB.
All compute nodes are equipped with local scratch (TMP) and system file systems.
They also have access to a common NFS file system for small long-term user data
(HOME) and to another common file system for large medium-term work files
(WORK).

In the future all compute nodes will have direct access to all shared filesystems via a
fast storage area network (SAN) using the QFS file system. High IO bandwidth will
be achieved by striping multiple RAID systems.
All SMP compute nodes are connected to each other by Gigabit Ethernet. In 1Q2003
the proprietary high-speed Sun Fire Link networks have been installed to form two
clusters of 8 Sun Fire 6800 systems each. In september 2003 the Sun Fire Link
connection between the 4 Sun Fire 15K systems has been installed.
Finally all nodes will be upgraded with UltraSPARC-IV processors.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 5

2.2 Processors
The UltraSPARC-III Cu processor (US-III Cu) is a superscalar 64-bit processor with
two cache levels:

Level 1 (on chip):
• 64 KB for data and 32 KB for instructions

(4-way associative, 32 byte cache-lines, write-through, no-write allocate, pseudo random
replacement strategy, 2 clock cycles latency. Modified cache lines are written back
immediately into the L2 cache and a cache line is not fetched before a write operation)

• 2 KB prefetch cache, for an accelerated load of floating point numbers
(4-way associative, 64 byte cache lines, 32 byte subblocks, LRU replacement strategy)

• 2 KB write cache
(4-way associative, 64 byte cache lines, 32 byte subblocks, LRU replacement strategy)

Level 2 (off chip):
• 8 MB for data and instructions

(2-way associative (900 MHz), 512 Byte cache lines with 64 byte subblocks, approx. 12
clock cycles latency, 6.4 GB/s bandwidth, write-back; write-allocate strategy. Modified cache
lines are not written back until they are pushed out of the cache and before a write the whole
subblock has to be fetched from memory.)

The most important information about the current processors can be acquired with
the instruction

$ fpversion

Each clock period the processor can initiate 2 integer operations or an integer and a
memory operation, one floating point addition and one floating point multiplication.
Thus the peak performance in Mflop/s is twice the clock rate in MHz. In suitable
computing kernels, like the well-known Linpack benchmark or a matrix
multiplication, 70-90% of this rate will be actually attainable.

6 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

2.3 Memory
Each CPU board contains 4 processors and their external (L2) caches together with
their local interleaved memory.
In the Sun Fire 6800, 6 of these boards are coupled with a crossbar. The memory
bandwidth amounts to theoretically 2.4 GB/s for a single processor and -- due to
snoop bus limitations -- 9.6 GB/s for all 24 processors of a SMP node.
In the Sun Fire 15K, 18 CPU boards are interconnected with a crossbar and the
cache coherency is handled by a combination of snooping within each board and
directory-based cache coherency between the boards.

From the programmer's point of view, the Fire 6800 thereby offers a " flat " memory
system with a limited bandwidth (9.6 GB/s), i.e. all memory cells approximately
have the same distance to each processor (latency about 270 ns), whereas data
locality plays a more important role in the Fire 15K (cc-NUMA architecture).
The latency to get data from memory on the same board is approximately 270 ns.
The Fire 15K’s latency for fetching remote data will be at least 330 ns and in
extreme cases, however, up to about 600 ns. Theoretically the total memory
bandwidth will be between 43.2 GB/s (worst case) and 172.8 GB/s (only local
accesses). Data locality will be supported by the upcoming version of the Solaris 9
operating system.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 7

2.4 Network RWTH

Gigabit Ethernet is used to interconnect SMP nodes. Furthermore, two tightly
coupled clusters of 8 Fire 6800 systems each have been formed and one cluster of 4
Fire 15K systems will be formed in the near future with proprietary high-speed Sun
Fire Link networks. With Sun’s version of MPI, a latency of 4 micro seconds and a
bandwidth of about 2 GB/s can be obtained between 2 nodes compared to a latency
of at least 100 us and a maximum bandwidth of about 100 MB/s when using the
Gigabit Ethernet. It takes at least 8 simultaneous transfers to saturate the Fire Link
connection between two nodes. NEW

8 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

3 Operating System
The Solaris Operating Environment is an operating system of the UNIX family.
The current version on about half of the Sun Fire machines is Solaris 8, and Solaris 9
on the other half. We will completely migrate to Solaris 9 soon. RWTH

The command
$ uname -r

will print out the corresponding SunOS release level 5.8 or 5.9.
NEW Solaris 9 will introduce the multiple page size support and the memory
placement option (MPO) which is particularly important for the Sun Fire 15K
systems.
By default Solaris organizes all data in pages of 8 KB. Programs with a large
memory requirement and/or programs which access memory randomly or with non-
unit strides might profit from using a large page size (reduction of TLB misses). This
can be done by using the ppgsz command. Example:

$ man ppgsz # manual page

$ ppgsz -o heap=4M,stack=4M a.out # program start

As an alternative environment variables can be used:
$ LD_PRELOAD=mpss.so.1 MPSSHEAP=4M \
 MPSSSTACK=4M a.out

A new command-line option, -xpagesize, enables the running program to set the
preferred stack and heap page size at program startup (Studio 8 compilers). For
example, -xpagesize=4M sets the preferred Solaris 9 operating environment
stack and heap page sizes to 4 megabytes. Choose from a set of preset values. Stack
or heap page sizes can be set individually with -xpagesize_stack and -
xpagesize_heap. (Note that this feature is not available on Solaris 7 and Solaris
8 environments. A program compiled with this flag will fail to link these
environments.) See the f95 man page for details.

All dynamically or locally allocated data, as well as uninitialized Fortran COMMON
Blocks will be allocated on large pages (4 MB in the above example), if enough
consecutive memory is available. You may check the running program with the
command (Solaris 9)

$ pmap -s pid # address space map of a process

The Sun Fire 15K machines have a non uniform memory access (cc-NUMA)
architecture. Thus processors have a quicker access to data on a memory chip on the
same CPU board than to that residing on a different board. Whereas Solaris 8
allocates data uniformly on all boards, MPO in Solaris 9 tries to place data (pages)
on the same board as the processor, which touches the data first (first touch policy).
If you prefer to distribute the data across the boards, you can start your prgram with
the environment variables

$ LD_PRELOAD=madv.so.1 MADV=access_many a.out

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 9

See the madv.so.1 and madvise manual pages for further information. MPO is
nicely described in a detailed whitepaper, which is available on the Sun web site at
http://www.sun.com/servers/wp/docs/mpo_v7_CUSTOMER.pdf.

3.1 Addressing Modes
Solaris 8 and 9 are 64-bit UNIX operating systems. Programs can be compiled and
linked in 32-bit mode (default) or 64-bit mode. This affects memory addressing
(usage of 32- or 64-bit pointers) and has no influence on the precision of floating
point numbers (4- or 8-byte real numbers). Programs needing more than 4 GB
memory, have to use the 64-bit addressing mode. The switches for UltraSPARC-
III Cu specific compilation and linking are

-xarch=v8plusb 32-bit
-xarch=v9b 64-bit

Note: long int data and pointers in C programs are stored with 8 bytes when
using 64-bit addressing mode.

3.2 Batch Job Administration RWTH
Batchjobs are handled by the Sun GridEngine (formerly Codine).
Job scripts can be submitted to the batch system with the line command

$ qsub [options] [scriptfile | - [script_args]]

or through the graphical user interface
$ qmon

The attributes of queued jobs can be modified with
$ qalter [options]

Jobs can be deleted with
$ qdel job_id

Status information can be inquired with
$ qstat -f | -j job_id | -u user

On overview of the current batch job load of the entire Sun Fire cluster can be
obtained with the utility

$ jobinfo RWTH

The most important parameters of qsub are:

10 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

-o [hostname:]path standard output file
-e [hostname:]path standard error file
-j y|n merge error outputs into standard

output
-l resource=value,... specification of the necessary

resources (see below)
-N name job name
-pe parallel_environment ntask processor count for the MPI

environment (see below)
-v variable[=value] set environment variables
-w v only check the job parameters, do

not submit (this does currently not
work in combination with the -pe
parameter)

-r n no restart, in case of a system crash
-hold_jid job_id,... start after the termination of the

indicated job
-M mail_address notification mail address
-m b | e | a | s | n send notification mail at job begin |

end | abort | suspend | send no mail

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 11

The most important resource parameters are (see qsub-parameter -l):

-l hostname=hostname computer name. Normally the use of
this parameter is not recommended.

-l h_rt=hh:mm:ss required real time
[[hours:]minutes:]seconds
Default: 0:10:00
Maximum: 24:00:00

-l h_vmem=xxxX virtual memory
specification in bytes, KB, MB oder
GB
e.g. vmem=10M
default: vmem=1M

-l num_proc=nthread in case of shared memory
parallelization: specification of the
number of threads

-l ostype=sunos start on the SunFire compute nodes.
-l solaris8
-l solaris9

during the migration period from
Solaris 8 to Solaris 9 these resource
parameters may be used. Normally
the use of these parameters is not
recommended.

-l march=sf-15k
-l march=sf-6800

jobs can be directed to the Sun Fire
15K or to the Sun Fire 6800 nodes.
Normally the use of these
parameters is not recommended.

-l software=#_of_licenses the need for software licenses has to
be specified.
Currently the available licensed
packages are: abaqus, ansys, cfx4,
cfx5, gamess, gaussian, g98, linda,
marc, matlab, tascflow
The number of licenses normally
equals 1.

-l hw_counters NEW Specify this resource, if you want to
collect performance information
(collect command).

MPI-Jobs have to be submitted into one of the following "parallel environments".
The number of MPI processes has to be specified (nproc)

12 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

-pe mpi_sunos_* nproc the MPI job will be started on any
of the Sun Fire machines

-pe mpi_sunos_6800 nproc the MPI job will be started on Sun
Fire 6800 nodes only

-pe mpi_sunos_15k nproc the MPI job will be started on Sun
Fire 15K nodes only

-pe mpi_sunos_1host nproc all processes of the MPI job will be
started on any one Sun Fire
node.All MPI communication will
use the common main memory.

The parameters can also be indicated as comment lines, starting with the characters
"#$", in the beginning of the job scripts. Command line parameters have higher
precedence than the imbedded script flags.
Submitting a serial job:

$ qsub -o $HOME/aus.txt -j y -l ostype=sunos \
-l h_rt=00:15:00 -l h_vmem=500M scriptfile

This corresponds to
#!/usr/bin/ksh
#$ -o $HOME/aus.txt
#$ -j y
#$ -l h_rt=00:15:00
#$ -l h_vmem=500M
#$ -l ostype=sunos

cd workdir
program

Example of a batch job script for starting a Sun MPI program:
(The environment variable MPRUN_FLAGS is predefined by the batch system in
order to direct the MPI processes to the reserved machines. The limits are per
process limits, so in total 5 times 500 MB will be reserved.)

#!/usr/bin/ksh
#$ -N MPI-Test-Job
#$ -l h_rt=00:15:00
#$ -l h_vmem=500M
#$ -pe mpi_sunos_* 5
#$ -l ostype=sunos
cd workdir
mprun program

Example of a batch job script starting an OpenMP or an autoparallel program:
(The environment variable OMP_NUM_THREADS is predefined by the batch system
in order to start as many threads as processors have been reserved. 500 MB will be
reserved on one node for all 5 threads.)

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 13

#!/usr/bin/ksh
#$ -N OpenMP-Test-Job
#$ -l h_rt=00:15:00
#$ -l h_vmem=500M
#$ -l num_proc=6
#$ -l ostype=sunos
cd workdir
program

Hybrid Programs use a combination of MPI and OpenMP, where each MPI process
is multi-threaded. Example of a batch job script starting a hybrid program:
(The environment variables MPRUN_FLAGS and OMP_NUM_THREADS are
predefined by the batch system. In this example 5 groups of 4 CPUs will be
reserved.)

#!/usr/bin/ksh
#$ -N Hybrid-Test-Job
#$ -l h_rt=00:15:00
#$ -l h_vmem=500M
#$ -l num_proc=4
#$ -pe mpi_sunos_15k 5
#$ -l ostype=sunos
cd workdir
mprun program

3.3 Defaults of the User Environment RWTH
The login shell is the korn shell (ksh). It's prompt is symbolized by the dollar sign.
Accordingly numerous initialization scripts follow this syntax. They must be started
with

$. scriptfile

Environment variables are set with
$ export variable=value

This corresponds to the C shell command
% setenv variable value

If you prefer to use a different shell, start any necessary initialization scripts before
you change to your preferred shell.

$. init_script
$ exec csh
%

The C shell prompt is indicated with an “percentage” symbol.

For the use of the Sun ONE Studio 8 Compiler Collection environment and HPC
ClusterTools, the environment variables PATH and MANPATH are already adapted in
the user profile:

14 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

$ export PATH=${PATH}:\
/opt/SUNWspro/bin:/optSUNWhpc/bin

$ export MANPATH=${MANPATH}:\
/opt/SUNWspro/man:/optSUNWhpc/man

3.4 User File Management RWTH
Every user owns directories on shared file systems for small, long-term user files
($HOME=/home/username) and for large, medium-term workfiles
($WORK=/work/username). The $HOME data will be saved regularly.

A directory for local scratch files ($TMP=/tmp/username/login_pid) is
accessible only on the respective node and will be automatically created before and
deleted after the terminal session or the batch job.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 15

4 Programming/Tuning

4.1 Sun Compilers
The Sun ONE Studio 8 Development Tools are now in production mode and the
default compilers. They include the Sun Fortran 95 7.1, Sun C 5.5 and Sun C++ 5.5
compilers. If necessary you can use the previous version of the compilers by
modification of the search path with the following commands RWTH

$. studio7.init # previous compiler

We recommend that you always recompile your code with the latest production
compiler for performance reasons and bug fixes.
Check the compiler version which you are currently using with the option

-V

or with the command
$ dumpstabs object_file

Online information in addition to the manual pages can be found by directing your
browser to the local file

file:///opt/SUNWspro/docs/index.html

or to the website
http://docs.sun.com/db/coll/771.2

Particularly the new features are described in
http://docs.sun.com/source/816-452/1.html

The compilers are invoked with the commands
$ cc, c89, c99, f90, f95, CC

The appropriate manual pages are available. You can get an overview of the
available compiler flags with the option

-flags

It is in general recommended to use the same flags for compiling and for linking.

NEWNFrom Studio 7 on, there no longer is a separate Fortran 77 compiler available.
But there is an additional option in the new Fortran95 compiler improving the
compatibility to Fortran 77

-f77

which has several suboptions. Using this option without any suboption list expands
to

-ftrap=%none -f77=%all

which enables all compatibility features at the same time and also mimics the
Fortran 77's behavior regarding arithmetic exception trapping. We recommend to
add

-f77 -ftrap=common

in order to revert to the f95 trapping, which is considered to be safer.

16 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

When linking to old f77 object binaries, you may want to add the option
-xlang=f77

at the link step.
Detailed information about compatibility issues between Fortran 77 and Fortran 95
can be found in

http://docs.sun.com/source/816-2457/5_f77.html

Compute intensive program parts can be translated and linked with the optimization
options (US-III Cu)

-fast –xarch=v9b (64 bit addressing) or
-fast –xarch=v8plusb (32 bit addressing)

-fast is a macro expanding to several individual options, which are meant to give
you the best performance with one single compile and link (!) option. Note however
that the expansion of -fast might be different across the various compilers and
can change between different compiler releases.

At present (Studio 8) -fast with the Fortran 95 compiler corresponds to the
following list (see manual page):

-O5 -xarch=native –xpad=local –xvector=yes
-xprefetch=auto,explicit –dalign –fsimple=2
–fns=yes –ftrap=common –xlibmil –xlibmopt
-xdepend=yes -fround=nearest

with the C compiler:
-fns –fsimple=2 -fsingle –ftrap=%none -
xalias_level=basic -xarch=native –xbuiltin=%all
-xdepend –xlibmil -xmemalign=8s
-xprefetch=auto,explicit -xO5

and with the C++ compiler:
-xO5 -xarch=native -xmemalign=8s –fsimple=2
-fns=yes –ftrap=%none –xlibmil -xlibmopt
-xbuiltin=%all

For further optimization by the C-compiler the following options can be added:
–xvector –xspfconst

and for further optimization by the C++-compiler the following options can be
added:

-xalias_level –xvector –xspfconst
-xprefetch=auto,explicit

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 17

The generated code can be specifically tuned for the 900 Mhz-UltraSPARC-III Cu
processor (US-III Cu) by specifying

-xchip=ultra3cu -xcache=64/32/4:8192/512/2 \
 -xarch=v8plusb (32-bit addressing mode)
-xchip=ultra3cu -xcache=64/32/4:8192/512/2 \
 -xarch=v9b (64-bit addressing mode)

In general it is recommended to specify the precise architecture flags for linkage as
well (-xarch=v8plusb / v9b for the UltraSPARC-III Cu processor), so that the
optimal run time libraries are used.
You can get a survey of the compiler flags used by adding the option

–v (Fortran and C++)
-# (C)

The compiler supports inlining of function and subroutine calls. With optimization
level -xO4 and above, this is attempted for functions/subroutines within the same
source file. The programmer can also specify which functions/subroutines should be
inlined, by specifying these with the following option

-xinline=routine_list

Note however that in this case, automatic inlining is disabled. It can be restored
through the %auto option. We therefore recommend the following:

-xinline=%auto,routine_list

If one wishes to have the compiler perform inlining across various source files, the -
xipo option can be used. This is a compile and link option. With the 7.0 release, -
xipo=2 is also supported. This adds memory related optimizations to the
interprocedural analysis.
Program kernels with numerous branches can be further optimized with the profile
feedback method. This two step method starts with a compile using this option
added to the regular optimization options:

–xprofile=collect:a.out

Then the program should be run for one or more data sets. During these runs, run-
time characteristics will be gathered.
The second phase consists of a re-compile, using the run-time statistics:

–xprofile=use:a.out

This will then hopefully give a better optimized executable, but keep in mind this is
of benefit for specific scenario's only.

NOTE: High optimization can have an influence on floating points results due to
different rounding errors. In order not to change the order of the arithmetic
operations by the optimization, a further option can be added, which reduces the
execution speed however:

18 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

-fast –fsimple=0 –xnolibmopt (Fortran)

The option
–g

produces debugging information. This is also useful for run-time analysis with the
Performance Analyzer, which can use the debugging information to attribute time
spent to particular lines of the source code. Use of -g does not substantially impact
optimizations performed by the new Sun compilers. Meanwhile, the correspondence
between the binary program and the source code is weakened by optimization,
making debugging more difficult.
The Fortran compiler prints a lot of information (compiler messages, cross reference
list, etc.) about the program in a separate listing file when compiling with the option

$ f90 -Xlist ... program.f
$ cat program.lst

The default data mappings of the Fortran compiler can be adjusted with the -
typemap option. The normal setting is

-typemap=real:32,double:64,integer:32 ...

For example with
$ f90 -typemap=real:64,double:64,integer:32 ...

the REAL type can be mapped to 8 bytes.
When using the -g option, the latest Sun compilers introduce comments about loop
optimizations into the object files, which can be output by the command

$ er_src progname.o

A comment like
Loop below pipelined with steady-state cycle
count..

indicates that modulo scheduling (aka software pipelining) has been applied, which
in general gives better performance.
An expert of the chip architecture will be able to judge by the additional
information, if further optimizations are possible.
With the help of the er_src command a successful subroutine inlining can also be
easily verified:

$ er_src *.o | grep inline

NOTE: The compiler options are interpreted from left to the right. In the case of
contradictory options the right most dominates.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 19

4.2 The KCC C++ Compiler by KAI RWTH
KCC is an excellent C++ compiler by Kuck & Associates. KCC translates C++
programs to an intermediate C code, which then can be compiled by a native C
compiler. KCC is imbedded in the guidec++ OpenMP compiler.
The most important KCC flags are
+K3 maximum optimization
-O<n> resp. –fast optimization level of the back-end C compiler (will

be passed through)
-k or -keep_gen_c do not delete the generated intermediate C code.

The C code stored into <filename>.int.c might be
interesting, but it is hard to read.

-v verbose mode
--backend ... pass the following option to the back end compiler
-c, -o will be passed through as well.

4.3 Interval Arithmetic
The Sun Fortran and C++ compilers support interval arithmetic by an intrinsic
INTERVAL data type and the UltraSPARC-III Cu processor supports fast switching
of the rounding mode of floating point operations.
The use of interval arithmetic requires the use of appropriate numerical algorithms.

4.4 Tuning Tips
Compiler options, compiler directives, programming techniques and last but not
least the Sun performance library with highly optimized routines can be used for
accelerating programs.
Recently an excellent book covering this topic particularly on UltraSPARC
computers has been published:

Rajat Garg and Ilya SharapovTechniques for Optimizing Applications:
High Performance Computing,ISBN:0-13-093476-3, published by
Prentice-Hall PTR/Sun Press.

Contiguous memory access is critical for reducing cache and TLB misses. This has a
direct impact on the addressing of multidimensional fields or structures. Therefore
Fortran arrays should be processed in columns and C and C++ arrays in rows. When
using structures, all structure components should be processed in quick succession.
Frequently this can be achieved by the technique of the loop interchange.
The limited memory bandwidth of RISC processors like the UltraSPARC III is a
severe bottleneck for many scientific applications. With prefetching data can be
loaded in advance from the memory into the cache and into the registers. This can be
supported automatically by hard- and software but also by explicitly adding prefetch
directives resp. calls.
The re-use of cache contents is very important, in order to reduce the number of
memory accesses. If possible block algorithms should be used e.g. from the
optimized Sun performance library described below.
Cache behavior of programs can be improved frequently by the techniques of loop

20 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

fission (=loop splitting), by loop fusion (=loop collapsing), by loop unrolling (see
option xunroll=n), by loop blocking, the strip mining and by combinations of
these methods. Conflicts caused by the mapping of storage addresses to cache
addresses can be eased by the creation of buffer areas (padding) (see compiler option
–pad).

With the option –dalign the memory access on 64 bit data can be accelerated.
This alignment permits the compiler to use single 64 bit load and store instructions.
Otherwise, the program must use more than one instruction for each memory access.
However this option must be applied to each routine.
With this option, the compiler will assume that double precision data has been
aligned on an 8-byte boundary. If the application violates this rule, the run-time
behaviour is undetermined, but typically the program will crash.
On well-behaved programs, this should not be an issue, but care should be taken for
those applications that perform their own memory management, switching the
interpretation of a chunk of memory while the program executes. A classical
example can be found in some (older) Fortran programs. A large INTEGER
COMMON -block is allocated, but later on this is declared to be a DOUBLE
PRECISION COMMON -block of half the size. Under such circumstances, a
misalignment of data can easily happen.
NOTE: The -dalign options is actually required for Fortran MPI programs and
for programs linked to other libraries like the Sun Performance Library and the NAG
libraries.
The compiler optimization can be improved by integrating frequently called small
subroutines into the calling subroutines (inlining). The expense for the subroutine
call will be avoided thereby.

-xinline=routine1,routine2,...
(Inlining of routines from the same source file)

-xO4 –xcrossfile
(Inlining of routines from other files in the same compiler call)

-xipo

(Inlining of routines from other files in different compiler calls)

In C and C++ programs the use of pointers frequently obstructs the possibility for
optimization by the compiler. Through compiler options

–xrestrict and –xalias_level=...
it is possible to give additional information to the C-compiler.
With the directive

#pragma pipeloop(0)

in front of a for loop it can be indicated to the C-compiler that there is no data
dependency present in the loop.
Word of caution. These options and the pragma make certain assumption. When
using these mechanisms incorrectly, the behaviour of the program becomes
undefined. Please study the documentation carefully before using these options or

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 21

directives.

4.5 Time measurements
For real time measurements a high-resolution timer is available. However, the
measurements can supply reliable, reproducible results only on an (almost) empty
machine. At least the number of runnable processes (use uptime command) plus
the number of processors needed for the measurement has to be by far less than the
number of processors available on the compute node.
Example in C

#include <sys/time.h>
/* Real time in nanoseconds as long long int */
double second;
second = (double) gethrtime() * 1.0E-9;

and in Fortran
INTEGER*8 gethrtime
REAL*8 second
second = 1.d-9 * gethrtime()

CPU time measurements have a smaller precision and are more time costly. For
measuring large time intervals they are quite suitable.
In case of parallel programs, real time measurements should by made anyway!
After linking a library supplied by the computing center:

-L/usr/local_rwth/lib –lr_lib RWTH

the functions r_rtime and r_ctime are available. They return the real time and
the CPU time, respectively, as double precision floating point numbers.

4.6 Hardware Performance Counters
The UltraSPARC-III Cu chip offers 2 programmable 32-bit performance counters
for counting various hardware events.
The cputrack command (see man cputrack), the cpc-library (see man cpc),
the portable PCL-library or the Performance Analyzer (see chapter 7) can be used to
access these counters.
The command

$ cputrack –h

lists the names of the countable events. A simple application can be seen in the shell
script

/usr/local_rwth/bin/mflops RWTH

Just call
$ /usr/local_rwth/bin/mflops a.out RWTH

to count the number of floating points instructions during the execution of a.out in
MFlop/s.

$ man cpc_bind_event

22 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

displays an example program using the cpc library.
The portable performance counter library (PCL) profits from the cpc library. It can
be linked by

$ f90 –L/usr/local_rwth/lib –lpcl –lcpc ...

A more elegant way of obtaining performance information is the use of the collect
command and the er_print utility or the analyzer GUI (see chapter 7).

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 23

5 Parallelization
Parallelization for computers with shared memory (SM) means either the automatic
distribution of loop iterations on several processors or the explicit distribution of
work on the processors by compiler directives and function calls (OpenMP) or a
combination of both.
Parallelism for computers with distributed memory (DM) is done via the explicit
distribution of work and data on the processors and their coordination with the
exchange of messages (Message Passing with MPI).
MPI programs run on shared memory computers as well, whereas OpenMP
programs (normally) do not run on computers with distributed memory. As a
consequence MPI programs can use all available processors of the SMP cluster,
whereas OpenMP programs can use up to 24 processors of a Sun Fire 6800 node, or
up to 72 Processors of a Sun Fire 15K node.
For large applications the hybrid parallelization approach, a combination of coarse-
grained parallelism with MPI and underlying fine-grained parallelism with OpenMP,
might be an attractive possibility, in order to use as many processors efficiently as
possible.

5.1 Message passing with MPI

5.1.1 Sun MPI
Sun MPI is the Sun implementation of the MPI standard and is part of the Sun HPC
ClusterTools software suite. At present, HPC ClusterTools 5.0 is installed.
The compiler drivers mpf77, mpf90 , mpcc and mpCC and the instruction for
starting an MPI application mprun are in the directory /opt/SUNWhpc/bin. The
necessary include directory /opt/SUNWhpc/include and the library directory
/opt/SUNWhpc/lib are picked up automatically by these compiler drivers.
Example (recommendation):

$ mpf90 –c -dalign ... *.f90
$ mpf90 –o a.out *.o -lmpi
$ mprun –np 4 a.out

Example (only for explanation):
$ f90 –I /opt/SUNWhpc/include –c -dalign ... *.f90
$ f90 –o a.out *.o –L/opt/SUNWhpc/lib –lmpi
$ /opt/SUNWhpc/bin/mprun –np 4 a.out

MPI programs can be started with the command
$ mprun [options] program

The command mprun has numerous flags for placing the MPI tasks on the compute
nodes and for input and output control (see also man mprun and mprun -h).

5.1.1.1 Placing the MPI-Tasks with mprun

24 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

The following table contains the most important parameters of mprun for the
distribution of the MPI tasks on the involved machines.
Please note however, that large computing jobs should not be started interactively,
and that with use of batch jobs (see chapter 3), the GridEngine batch system
determines the distribution of the MPI tasks on the machines to a large extent.
Small MPI test jobs can be started on the interactive node, where you use to logged
in by just specifying

$ mprun -np n program

because the environment variable MPRUN_FLAGS is predefined in the user profile
such that all MPI processes will be started on the current machine.

-J Prints the job identification number
–np n Start of exactly n MPI tasks
–np 0 Start of exactly one MPI task for each

processor
–S –np n Start n MPI tasks, but settle for one

process per CPU if not enough CPUs
are available.

–W –np n Cyclic distribution of the MPI tasks
on the processors, if the number of
MPI tasks is larger than the number of
the processors of the SMP node.

–np n \
-l "sunc01 2, sunc02 3"

Explicit distributing of the n MPI
tasks to the indicated SMP nodes.
Note: capitalization is relevant

–np n –m rankmapfile Explicit distribution of the n MPI
tasks on SMP nodes listed in a file.

-np n –Ns Start of exactly one MPI task on each
of n SMP nodes.

–Zt m –np n Start of n MPI tasks in groups of m on
each of the involved nodes.

–Z m –np n Start of n MPI tasks in groups of m.
Several groups on a sufficiently large
SMP node are allowed.

5.1.1.2 Input and output control with mprun
Under normal conditions standard input (stdin) is passed to all MPI tasks by the
mprun, command. Standard output (stdout) as well as standard error output
(stderr) of all tasks are passed to the standard output of mprun.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 25

By further options of the command mprun this behavior can be modified:
–D The error outputs of the tasks are passed to the

error output of the mprun command.
–N All standard input and output is turned off.
–n /dev/null is passed to the standard input. That

can be useful for MPI jobs, which run in the
background (e.g. as a batch job), so that they
do not block, if they wait unintentionally for an
input. In this case they will read an EOF.

–B The output of the tasks is written to files
named out.jid.rank.

–o The output is buffered line by line and the rank
of the respective process is written on the
beginning of each line.

–I "0r,1wl,2wl" more precise controlling of the input and
output. Only complete lines will be written.

–I "0r,1wt,2wt" Only complete lines are output and all lines
have the task rank placed in front.

–I "0r=input,\
1wt=out.&J.&R,\
2w=err.&J.&R"

All tasks read the same input file, but write in
separate output and error output files

5.1.1.3 Handling MPI program runs
You can terminate a MPI job with the job identification number jid
(see: mprun –J) by:

$ mpkill jid

The command mpps gives a list of the processes, that run under the control of the
MPI run time system (CRE=cluster run time environment).

$ mpps –pef

The command mpinfo gives an overview of the configuration of all nodes attached
to the CRE. Example:

$ mpinfo –N

5.1.1.4 Sun MPI environment variables
Numerous environment variables can govern the behavior of an MPI program and
improve its performance.
In the case of exclusive use of the involved SMP nodes, in particular if one
processor in each node is kept free for system processes, which is typically the case
in the RWTH batch environment, it’s possible to accelerate a program with:

$ export MPI_SPIN=1

The MPI tasks wait then actively (busy waiting, spinning) for messages and keep
their processor busy thereby.
In some cases (e.g. pingpong tests)

26 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

$ export MPI_POLLALL=0

accelerates the application (do not poll).
In case of problems more run time messages can be printed through

$ export MPI_SHOW_INTERFACES=3
$ export MPI_SHOW_ERRORS=1
$ export MPI_CHECK_ARGS=1

The current values of all MPI related environment variables will be listed at the
program start with:

$ export MPI_PRINTENV=1

The Sun HPC ClusterTools Performance Guide contains many tips for the tuning of
MPI applications (http://docs-pdf.sun.com/816-0656-10/816-0656-10.pdf).

NEWThe new HPC ClusterTools Version 5.0 includes a novel profiling tool
mpprof which is easy to use and gives hints for setting additional environment
variables which might improve the performance of a similar program run.
After enabling MPI profiling by setting the environment variable

$ export MPI_PROFILE=1
$ mprun -J -np n ... a.out

the MPI program run will write out profiling date for the MPI process ranks to a set
of intermediate files, one file per process rank, as well as an index file pointing to
the intermediate files. The mpprof command then generates a report of the
performance characteristics of the MPI program

$ mpprof mpprof.index.cre.jid

with jid being the job ID of the cluster runtime environment (CRE) printed out
with the -J option of the mprun command. The report also contains
recommendations for settings or modifications of MPI environment variables. The
process of profiling and modifying these variables can be iterated, until the
performance is optimal and no further hints are given.
The collection of profiling data can be controlled by additional environment
variables which are described in the manual page (man mpprof).

5.1.2 mpich RWTH
With the improved interoperability of the latest version 6.1 of the Totalview
debugger and the upcoming HPC ClusterTools 5.0 we will no longer support mpich
on the Sun platform. NEW

5.2 Shared memory programming with OpenMP
For shared memory programming OpenMP is becoming the de facto standard. The
OpenMP API is defined for FORTRAN, C and C++ and consists of compiler
directives, run time routines and environment variables.
In the parallel regions of a program several threads are started, that execute the
contained program segment redundantly, until they hit a worksharing construct.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 27

Within this construct, the contained work (usually do- or for-loops) is distributed
among the threads. Under normal conditions all threads have access to all data
(shared data). But pay attention: if data, accessed by several threads, is modified,
then the access to this data must be protected in critical regions.
Also private data areas can be used, where the individual threads hold their
temporary data. All local data of subroutines, which are called within parallel
regions, are put on the stack, and thus don’t keep their contents from one call to the
next!
Therefore, Fortran programs must be translated with the option –stackvar.
COMMON blocks, data in modules or SAVE statements must be used with caution
(thread safety).
Attention! In many cases, the stack area for the slave threads must be increased by
changing the environment variable STACKSIZE, or the stack area for the master
thread must be increased with the (Korn shell) command ulimit (specification in
KB). It is recommended to use the new compiler option (version 7.0)

-xcheck=stkovf

in order to detect stack overflow at runtime.
Hint: In a loop, which is to be parallelized, the results must not depend on the order
of the loop iterations! Try to run the loop backwards in serial mode. The results
should be the same. (This is a necessary, but not a sufficient condition!)

The number of the threads to use is indicated by the environment variable
OMP_NUM_THREADS.
Notes: If OMP_NUM_THREADS is not set, then Sun OpenMP starts only 1 thread (as
opposed to the Guide compiler from the KAP/Pro Toolset which starts as many
threads as there are processors available).
On a loaded system fewer threads may be employed than specified by this
environment variable, because the dynamic mode is used by default (as opposed to
the Guide compiler). Use the environment variable OMP_DYNAMIC to change this
behaviour.

5.2.1 Sun-OpenMP
By adding the option

-xopenmp

the OpenMP directives (according to the latest OpenMP 2.0 specifications) are
interpreted by the Fortran95 compiler. This option is an abbreviation for

–mp=openmp –explicitpar –stackvar –D_OPENMP –O3

Fortunately, the explicit parallelization can be combined with the automatic
parallelization of the Fortran compiler. Loops within parallel OpenMP regions are
no longer subject to automatic parallelization. Nested parallelization is not (yet)
supported.

The C- and C++-compilers support OpenMP as well after adding the option

28 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

-xopenmp

Enabling OpenMP[tm] parallelization with the -xopenmp option makes a program
potentially multi-threaded, but the -D_REENTRANT flag is not passed to the
compiler. The lack of the -D_REENTRANT flag causes some code (particularly the
templates from the Standard C++ Library) to compile with thread synchronization
disabled, which can result in programs silently getting wrong answers.
Workaround: Include the -D_REENTRANT flag on the compiler command line
whenever you include the -xopenmp option
(http://docs.sun.com/source/816-6727/relnotes.html#Documentation).

Between parallel regions the slave threads go to sleep. How they are woken up is
controlled by the environment variable SUNW_MP_THR_IDLE. The possible values
are:

$ export SUNW_MP_THR_IDLE=spin | sleep | ns | nms

The slave threads wait either actively (busy waiting, by default) and thereby
consume CPU time or passively (idle waiting) and must then be woken up by the
system or in a combination of these methods they wait first actively and fall asleep n
seconds or n milliseconds later. With fine-grained parallelization active waiting and
with coarse-grained parallelization passive waiting is recommended. Idle waiting
might be advantageous on an overloaded system.

Setting
$ export SUNW_MP_WARN=TRUE

enables additional warning messages of the OpenMP run time system.
Use the new Fortran compiler option

-XlistMP

to receive additional OpenMP related messages in the listing files (*.lst)

5.2.2 KAP/Pro Toolset RWTH
The KAP/Pro Toolset from the Kuck & Assoc. Inc. (KAI) contains OpenMP
compilers and tools.
The Guide compilers interpret OpenMP directives in Fortran, C and C++ programs
and generate intermediate programs with calls to the pthread library.
By just replacing the compiler and linker calls to

$ guidef77 | guidef90 | guidec | guidec++

appropriate compiler drivers are used.
By adding the

–WGkeep
flag the intermediate programs are kept. By linking with the option

–WGstats

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 29

a statistics file is written during program execution, which can be nicely visualized
with

$ guideview

A remarkable tool for the verification of the correctness of OpenMP programs is
Assure. Replacing the compiler and linker calls by

$ assuref77|assuref90|assurec|assurec++ \
-WGpname=project

the program is instrumented, such that during the program execution every memory
access is traced in order to detect possible data races.
The results of this analysis can be displayed with the GUI

$ assureview –pname=project

or printed out in line mode by
$ assureview –txt –pname project

The instrumented program will take about 10 times more CPU time and 10 times
more memory!
Recommendation: Never put an OpenMP code into production, before using
Assure!

5.2.3 Automatic shared memory parallelization of loops
The Sun Fortran- and C-compilers are able to parallelize loops automatically.
Success or failure to do so depends on the compiler's ability to be able to prove it is
safe to parallelize a (nested) loop. This is often application area specific (e.g. finite
differences versus finite elements), language dependent (pointers may make the
analysis hard) and coding style.
The respective option is

-xautopar
The -autopar option is an abbreviation for

–xautopar –depend –xO3

The combination of explicit parallelism by directives and automatic parallelism is
accessible by the option

-xparallel

as an abbreviation for
-xautopar –xexplicitpar –depend –xO3

Not only OpenMP directives are interpreted, but also proprietary parallelization
directives of Sun and Cray, which, since OpenMP becomes more and more a
standard, should not be used anymore. Adding

-mp=openmp

limits the compiler to OpenMP directives, if for historical reasons also different
directives should be still contained in the program.
With the option

30 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

-xreduction

automatic parallelization of reductions is also permitted, e.g. accumulations, dot
products etc., whereby the modification of the sequence of the arithmetic operation
can cause different rounding error accumulations.
Compiling with the option

-xloopinfo

supplies information about the parallelization.
If the number of loop iterations is unknown during compile time, then code is
produced, which decides at run-time whether a parallel execution of the loop is more
efficient or not (alternate coding).
Also with automatic parallelization, the number of the used threads can be specified
by the environment variable OMP_NUM_THREADS.

5.4 Hybrid Parallelization
The combination of MPI and OpenMP and/or autoparallelization is called hybrid
parallelization. Each MPI process is multi-threaded. It is important to link the
thread-safe version of the MPI library:

$ mpf90 -openmp -fast -c program.f90
$ mpf90 -openmp -fast -o a.out program.o -lmpi_mt
$ export OMP_NUM_THREADS=n
$ mprun -np m a.out

KAI's guide preprocessors can be used as well:
$ guidef90 -Wgcompiler=mpf90 -openmp -fast -c \
program.f90
$ guidef90 -Wgcompiler=mpf90 -openmp -fast \

-o a.out program.o -lmpi_mt
$ export OMP_NUM_THREADS=n
$ mprun -np m a.out

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 31

6 Debugging
If your program is causing problems, it might be good opportunity to lean back and
think for a while.
Take a step back:
• What were the last changes that you made? (A source code revision system (RCS,

CVS) might help.)
• Reduce the number of CPUs in a parallel program, try a serial program run if

possible.
• Reduce the optimization level of your compilation.
• Chose a smaller data set. Try to build a specific test case for your problem.
• Look for compiler messages and warnings. Use tools for a static program analysis

(see chapter 6.1).
• Try a dynamic analysis with appropriate compiler options (see chapter 6.2). In

case of an OpenMP program, use Assure (see chapter 5.2.2).
• Use a debugger. Use the smallest case which shows the error (see chapter 6.3).

6.1 Static program analysis
First, an exact static analysis of the program is recommended for error detection. The
Fortran compiler offers an -Xlist option which generates warning and error messages
into additional listing files (file extension .lst). For OpenMP programs there is a
new option -XlistMP. Furthermore the following tools can be used for static
analysis:

cc -v .. stricter semantic checks of C programs by the compiler
lint more accurate syntax check of C programs
ftnchek more accurate syntax check of Fortran77 programs
foresys more accurate syntax check of Fortran77 and Fortran90 programs

and more
Sometimes, program errors occur only after high optimization by the compiler. That
can be a compiler error or a programming error. If the program runs correctly
without compiler optimizations, the module causing the trouble can be found by
systematic bisectioning.

6.2 Dynamic program analysis
The program can be further checked by translation with certain options:

32 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

-C array bound check of Fortran programs
-Xlist global program analysis, write detailed list to files with the

ending .lst
-ftrap=%all pursue of floating point errors, like division by zero,

overflow, underflow. The error handling can be
programmed also explicitly, see: man ieee_handler

-g enrich the binary program with debugger information, for
step-by-step debugging, turn off all optimizations)

-xcheck=stkovf check stack overflow at runtime, new with version 7

A new extension to the -xcheck option flag enables special initialization of local
variables. Compiling with -xcheck=init_local initializes local variables to a
value that is likely to cause an arithmetic exception if it is used before it is assigned
by the program. Memory allocated by the ALLOCATE statement will also be
initialized in this manner. SAVE variables, module variables, and variables in
COMMON blocks are not initialized.

The sampling collector (see chapter 7.1) is now also able to detect memory leaks
$ collect -H

A core dump can be analyzed with the debugger, if the program was translated with
-g :

$ dbx a.out core

$ totalview a.out core

If a program with optimization delivers other results than without, then the changed
rounding error behavior can be responsible. There is a possibility to test this by
optimizing the program “carefully”:

$ f90 ... –fsimple=0 -xnolibmopt...

Thus, the sequence of the floating point operations is not changed by the
optimization, which can increase the run time.

6.3 Debuggers
At present four different debuggers are available. In all cases the program must be
translated and linked with the option –g and without optimization (at least in the
interesting program parts).
Don't forget to increase the core file size limit of your shell, if you want to analyze
the core that your program may have left behind:

$ ulimit -c unlimited

But please don't forget to purge core files afterwards!

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 33

6.3.1 dbx
dbx is a powerful line orientated debugger with a detailed online help.
It can as well be used to debug long running programs in batch mode. Collect the
dbx commands in an input file and start your program under control of dbx:

$ cat >> dbx.in < EOF
catch FPE
catch SIGSEGV
catch SIGBUS
run inputfile
where
dump
quit
EOF
$ dbx a.out < dbx.in

You may as well debug MPI-Programs this way:
$ mprun -np ntasks -o dbx a.out < dbx.in

It might be more comfortable only to run a few MPI processes through the debugger.
This can be accomplished by starting a small shell script like the following:

#!/bin/ksh
giving the corefile a useful name ...
coreadm -p core.%n.%f.p%p.j${MP_JOBID}.t$MP_RANK $$;
mechanism to restrict debugging to a subset of MPI
processes ...
if [[$MP_RANK < 2]]
then
 dbx a.out < dbx.in > dbx.out.t$MP_RANK
 mpkill -9 $MP_JOBID
else
 debug.exe
fi

This script, using the same input file dbx.in for dbx like above, is than run with
$ mprun ... rundebug.ksh

This will leave some core files with meaningful names behind, which then can be
analyzed with

dbx a.out core.machinename.a.out.pnnnn.jmmmm.tkk

6.3.2 Prism
prism is a graphic debugger for Sun MPI programs.
If the help information browser does not start correctly, use

$ export PRISM_BROWSER_SCRIPT=yes

NEW The syntax for starting prism has changed in Sun HPC ClusterTools 5.0:

34 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

$ mprun <mprun_options> prism <prism_options>

The <prism_options> no longer include any options for controlling the number of
processes, or process placement. Use the <mprun_options> for such control.
Examples:

$ mprun -np 8 prism program

$ mprun -np 8 prism program jid

$ mprun -np 8 -Zt 2 prism program corefile

6.3.3 TotalView RWTH

The state-of-the-art debugger TotalView from Etnus (http://www.etnus.com/) can be
used to debug serial and parallel Fortran, C and C++ programs. It is available on all
major platforms.
NEW The latest version 6.3 of the TotalView debugger supports the latest Sun
compilers as well as the latest version of the Sun HPC ClusterTools.
As an appendix a we include a TotalView Quick Reference Guide for the Sun Fire
SMP cluster.

6.3.3.1 Invocation of TotalView for serial programs
$. totalview.init
$ totalview program [corefile]

6.3.3.2 Debugging of Sun-MPI programs RWTH
$. totalview.init
$ totalview mprun –a –np 2 –l “$(hostname) 2” \

a.out

When the GUI appears, type g for go, or click Go in the TotalView window.
TotalView may display a dialog box:

Process mprun is a parallel job. Do you want to stop the job now?
Click Yes to open the TotalView debugger window with the Sun MPI source
window and leave all processes in a traced state.
Outstanding non-blocking messages can be displayed with the Tools >
Message Queue Window or the Tools > Message Queue Graph.

6.3.3.3 Debugging of OpenMP-programs
Before debugging an OpenMP program, the corresponding serial program should
run correctly. The typical OpenMP parallelization errors are data races, which are
hard to detect in a debugging session, because the timing behaviour of the program
is heavily influenced by debugging.
It is recommended to use the new Fortran compiler option

-XlistMP

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 35

to do a basic static program check. Furthermore the Assure tool is recommended for
the verification of OpenMP programs (see chapter 5.2.2).
But interactive debugging is possible as well. By default the Sun compilers’
OpenMP options require high optimisation (-xO3) which in turn prohibits
debugging. Since Studio 8 it is possible to debug Fortran and C programs using
OpenMP after compiling with a new suboption

$ f90 -openmp=noopt -g ...
$ cc -xopenmp=noopt -g ... RWTH

As an alternative you can use KAI’s guide precompiler, which can be combined with
TotalView.
Example:

$ guidef90 –WG,-cmpo=i [-WGkeepcpp] –g –c *.f90
$ guidef90 –WG,-cmpo=i –g –o a.out *.o
$ export OMP_NUM_THREADS=2
$. totalview.init
$ totalview a.out

For the interpretation of the OpenMP directives, the original source program is
transformed. The parallel regions are outlined into separate subroutines. Shared
variables are passed as call parameters and private variables are defined locally. A
parallel region cannot be entered stepwise, but only by running into a breakpoint.

36 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

7 Programming tools
This chapter describes tools that are available to help you assess the performance of
your code, identify potential performance problems, and locate the part of the code
where most of the execution time is spent.

7.1 Sampling Collector and Performance Analyzer
The Sampling Collector and the Performance Analyzer are a pair of tools that you
use to collect and analyze performance data for your application.
The Collector gathers performance data by sampling at regular time intervals and by
tracing function calls.
The performance information is gathered in so called experiment files, which can
then be displayed with the analyzer GUI or the er_print command after the
program has finished.

7.1.1 The Collector
At first you have to compile your program with the

-g

option. Link the program as usual and then start the executable under the control of
the Sampling Collector

collect collect_options a.out

Every 10 milliseconds profile data will be gathered and written in the experiment
file

test.1.er

The number will be automatically incremented on subsequent experiments. In fact
the experiment file is an entire directory with a lot of information. One can
manipulate these with the regular Unix commands, but it is recommended to use the

er_mv, er_rm, er_cp

utilities to move, remove or copy these directories. This ensures for example that
time stamps are preserved
After

er_print test.1.er

you can generate a first ASCII report from the experiment with the command
functions

Further commands are explained after invoking help or through the man page of the
er_print command.

By selecting the options of the collect command, many different kinds of
performance data can be gathered:

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 37

-p on | off | hi |
lo

Clock profiling ('hi' needs to be supported on the
system)

-H on | off Heap tracing
-m on | off MPI tracing
-h counter0,on,
counter1,on

Hardware Counters

-j on | off Java profiling
-S on | off |
seconds

Periodic sampling (default interval: 1 sec)

-o experimentfile Output file
-d directory Output directory
-g experimentgroup Output file group
-L size Output file size limit [MB]
-F on | off Follow descendant processes

Various hardware counters can be chosen for collecting. Typing the collect
command without any parameters, will print out all the counters available for
profiling. Some of the events can only be gathered in register 0 and some only in
register 1. Favorite choices are given in the following table.

-h cycles,on,insts,on Cycle count, instruction count
The quotient is the CPI rate (clocks per
instruction) The optimum would be 0.25.
The Mhz rate of the CPU multiplied with the
instruction count divided by the cycle count gives
the MIPS rate.

-h fpadd,on,fpmul,on Floating point additions and multiplications
The sum divided by the runtime in �s gives the
Mflop/s rate

-h cycles,on,dtlbm,on Cycle count, data translation look-aside buffer
(DTLB) misses
A high rate of DTLB misses indicates an
unpleasant memory access pattern of the program.
Large pages might help (Solaris 9)

-h cycles,on,ecstall,
on

L2 cache stall cycles.

-h cycles,on,dcstall,
on

L1 plus L2 cache stall cycles

-h ecref,on,ecm L2 cache references and misses
-h dcr,on,dcrm,on L1 cache read references and read misses
-h dcw,on,dcwm,on L1 cache write references and write misses

7.1.2 The Performance Analyzer

38 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

For the standard case of just collecting clock profiling and printing out the most
important information in text mode a simple shell script is available:

$ /usr/local_rwth/bin/sample a.out RWTH
$ more sample.out RWTH

A program call tree with performance information can be displayed with the locally
developed utility

$ /usr/local_rwth/bin/er_view RWTH

The full result of the analysis can be displayed graphically afterwards with the
Performance Analyzer GUI, which has been redesigned in the latest version.

$ analyzer experimentfile.er

7.1.3 The Performance Tools Collector Library API
Sometimes it is convinient to group performance data in self defined samples, and to
collect performance data only of a specific part of the program.
For this purpose the libcollector library can easily be used.
In the following example Fortran program, performance data only of the subroutines
work1 and work2 is collected:

program test_collector
call collector_pause()
call preproc
call collector_resume()
call collector_sample("start")
call work1
call collector_sample("work1")
call work2
call collector_sample("work2")
call collector_terminate_expt()
call postproc
end program test_collector

The libfcollector library (C: libcollector) has to be linked. And if this
program is started by

$ collect -S off a.out

performance data is only collected between the collector_resume and the
collector_terminate_expt calls. No periodic sampling is done, but single
samples are recorded whenever collector_sample is called. (The label is not
currently used). When the experiment file is evaluated, the filter mechanism can be
used to restrict the displayed data to the interesting program parts.
See the libcollector manual page for further information.

7.2 Frequency analysis with tcov
For error detection and tuning it might be helpful to know, how often each statement

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 39

is executed. For testing a program it is important that all program branches are
passed (test coverage). For this purpose, the program must be compiled and linked
with the option

–xprofile=tcov

In the following program execution the frequencies of all statements recorded. The
values can be entered in modified program sources using the command

$ tcov –a –50 –x a.out.profile \
[–p srcdir objdir] source_files...

Statements which have never been executed are marked by “#”.

7.3 Run time analysis with gprof
With gprof, a run time profile on module level can be generated. The program must
be translated and linked with the option –pg (Fortran) resp. –xpg (C). During the
execution a file named gmon.out is generated, which can be analyzed by

$ gprof program

With gprof it is easy to find out the number of the calls of a program module, which
is a useful information for inlining.
NOTE: gprof assumes that all calls of a module are equally expensive, which is not
always true. We recommend to use the Callers-Callees info in the Performance
Analyzer to gather this kind of information. It is much more reliable.

7.4 Run time analysis of MPI programs

7.4.1 Sampling Collector and Performance Analyzer
With MPI programs, the Sampling Collector (see chapter 6.1) collects run time
information for each MPI task, which can also be displayed for each task separately:

$ mprun –np n collect a.out

With a new option of the Sampling Collector MPI events can be traced as well
$ mprun -np n \

collect -m on -g experiment_group.erg a.out

together with the ability to bundle experiment files written by all MPI processes to
experiment groups and display them with the Analyzer

$ analyzer experiment_group

Running collect with a large number of MPI processes, the amount of experiment
data might become overwhelming. Starting the MPI program with a little script will
help:

$ mprun -np 4 run.ksh

with

40 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

#!/bin/ksh
filename: run.ksh
if [[$MP_RANK < 2]]
then

collect -m on -g test.erg a.out
else

a.out
fi

Performance information will be collected only for the MPI processes with rank 0
and 1.

7.4.2 Prism
The runtime analysis feature of Prism is no longer support. The usage of the analyzer
is recommended instead.

7.4.3 Vampir and VampirTrace RWTH
Vampir/Vampirtrace is an MPI performance analysis toolset sold by the company
Pallas. After linking the VampirTrace library to the MPI program, a trace file is
written during the program execution, which then can be displayed with the Vampir
graphical user interface.

Example in C:
$. vampir.init
$ mpcc –o a.out ... *.c \
 –L/usr/local_rwth/lib –lVT –lmpi -lnsl
$ mprun –np 4 a.out
$ vampir a.out.bvt

Example in Fortran:
$. vampir.init
$ mpf90 –o a.out ... *.f90 –R/usr/local_rwth/lib \

–L/usr/local_rwth/lib –lVT –lmpi -lnsl
$ mprun –np 4 a.out
$ vampir UNKNOWN.bvt

The functioning Vampirtrace library can be highly parametrized with a configuration
file. The name of this file has to be specified by the environment variable
VT_CONFIG.

7.4.4 Jumpshot and the MPE Library
The Multi-Processing Environment (MPE) attempts to provide programmers with a
complete suite of performance analysis tools for their MPI programs based on post
processing approach. These tools include a set of profiling libraries, a set of utility
programs, and a set of graphical visualization tools.
The most useful and widely used profiling libraries in MPE are the logging libraries.
Various logfile formats are supported, the most powerful one is SLOG. As the

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 41

default format is the CLOG, the programmer must set an environment variable to
overwrite the default format:

$ export MPE_LOG_FORMAT=SLOG

After linking the libraries liblmpe.a (MPE logging interface) and libmpe.a (MPE
graphics, logging, and other extensions) and, in the case of a Fortran program, the
additional wrapper library libmpe_f2cmpi.a, the (binary) logfiles will be generated
during runtime. Visualize these logfiles with the jumpshot (version 3) utility.

$ mpcc -c foo.c
$ mpcc -o foo foo.o \

-L/usr/local_rwth/lib -llmpe -lmpe -lmpi
$ export MPE_LOG_FORMAT=SLOG
$ mprun -np 4 foo
$ jumpshot foo.slog

Example in Fortran:
$ mpf90 -c foo.f90
$ mpf90 -o foo foo.o -L/usr/local_rwth/lib \
 -lmpe_f2cmpi -llmpe -lmpe -lmpi
$ export MPE_LOG_FORMAT=SLOG
$ mprun -np 4 foo
$ jumpshot Unknown.slog

NOTE: The trace file produced at the end of a Fortran program run is always called
Unknown.bvp.

42 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

8 Application software

8.1 Application software and program libraries RWTH
You will find the list of available application software and program libraries at
http://www.rz.rwth-aachen.de/sw/

8.2 The Sun Performance Library
The Sun Performance Library is a part of the Sun One Studio Compiler Collection
environment and contains highly optimized and parallelized versions of the well
known standard libraries LAPACK version 3.0, BLAS, FFTPACK version 4 and
VFFTPACK Verson 2.1 from the field of linear algebra, Fast Fourier transforms
and solution of sparse linear systems of equations (Sparse Solver, SuperLU) (see
http://www.netlib.org). Please link your program with the options:

-xarch=vplus8b -xlic_lib=sunperf 32 bit addressing
-xarch=v9b -xlic_lib=sunperf 64 bit addressing

The performance of programs using the BLAS1-library can be improved by the new
Fortran compiler option

-xknown_lib=blas

The corresponding routines will be inlined if possible.
The latest Performance Library contains new parallelized sparse BLAS routines for
matrix-matrix multiplication and a sparse triangular solver. Linpack routines are no
longer provided, it is stronly recommended to use the corresponding LAPACK
routines.
Many of the contained routines have been parallelized using the shared memory
programming model. Compare the execution times! Example:

$ f90 -dalign –mt -xlic_lib=sunperf ...
$ ptime a.out
$ (export OMP_NUM_THREADS=4; ptime a.out)

The number of Threads used by the parallel Performance Library can be determined
by the following call:

call USE_THREADS(n)

8.3 The Sun S3L library
The S3L-Library offers to MPI programs access to distributed arrays similar to the
array descriptors, as they are used in the public domain packages ScaLAPACK and
PETSc. The S3L-Library offers many functions from the fields linear algebra,
Fourier transforms, etc. and further auxiliary functions (toolkit). Numerous kernel
routines correspond to the ScaLAPACK interfaces.
The Toolkit functions are useful for working with parallel arrays and processor
grids, as well as for parallel input or output. S3L arrays can be transformed into
ScaLAPACK descriptors.

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 43

8.4 Nag Numerical Libraries RWTH
The Nag Numerical Libraries provide a broad range of reliable and robust numerical
and statistical routines in areas such as optimization, PDEs, ODEs, FFTs, correlation
and regression, and multivariate methods, to name but a few.
They are available in three flavours:

1) The serial NAG Mark 19 FORTRAN-Library (32 bit addressing mode)
f90 -xarch=v8plusb -dalign ... \
-L/usr/local_rwth/lib -lnag19 \ -
xlic_lib=sunperf -lF77

2) The shared memory version, which includes 231 routines that benefit from shared
memory parallelization (32- and 64-bit addressing modes) and has the identical
programming interface as the serial version

f90 -dalign -xarch=v8plusb ... \
 -L/usr/local_rwth/lib -lnagsmp32 \ -
xlic_lib=sunperf -lF77

f90 -dalign ... -xarch=v9b \
-L/usr/local_rwth/lib -lnagsmp64 \ -
xlic_lib=sunperf -lF77

3) and the NAG Parallel Library Release 3.0, which contains 183 routines that have
been specifically developed for use on distributed memory systems (32 bit
addressing mode) using the MPI library.

mpf90 -dalign -xarch=v8plusb ... \
 -L/usr/local_rwth/lib -lnagmpi -ls3l

44 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

9 Further information

9.1 Sun products

9.1.1 On Sun’s web site
• Sun Product Documentation (Overview)

(http://docs.sun.com)
• Sun ONE Studio 8 Compiler Collection (Overview)

(http://docs.sun.com/coll/771.3?q=Forte+8)
• Sun ONE Studio 8: Fortran User's Guide

(http://docs.sun.com/db/doc/817-0930?q=Forte+8)

• Sun ONE Studio 8: C User's Guide
(http://docs.sun.com/db/doc/817-0924?q=Forte+8)

• Sun ONE Studio 8: C++ User's Guide
(http://docs.sun.com/db/doc/817-0926?q=Forte+8)

• Sun ONE Studio 8: Fortran Programming Guide
(http://docs.sun.com/db/doc/817-0929?q=Forte+8)

• Sun ONE Studio 8: Fortran Library Reference
(http://docs.sun.com/db/doc/817-0928?q=Forte+8)

• Sun ONE Studio 8: OpenMP API User's Guide
(http://docs.sun.com/db/doc/817-0933?q=Forte+8)

• Prism 7.0 Software User's Guide
(http://docs.sun.com/db/doc/817-0088-10?q=Prism)

• Prism 7.0 Software Reference Manual
(http://docs.sun.com/db/doc/817-0089-10?q=Prism)

• Sun HPC ClusterTools 5 Software Documentation (Overview)
(http://docs.sun.com/coll/HPCCT5?q=Sun+MPI)
• Sun HPC ClusterTools 5 Software User's Guide

(http://docs.sun.com/db/doc/817-0084-10?q=Sun+MPI)

• Sun MPI 6.0 Software Programming and Reference Guide
(http://docs.sun.com/db/doc/817-0085-10?q=Sun+MPI)

• Sun HPC ClusterTools 5 Software Performance Guide
(http://docs.sun.com/db/doc/817-0090-10?q=Sun+MPI)

• Sun S3L 4.0 Software Programming Guide
(http://docs.sun.com/db/doc/817-0086-10?q=Sun+S3L)

• Sun S3L 4.0 Software Reference Manual
(http://docs.sun.com/db/doc/817-0087-10?q=Sun+S3L)

9.1.2 On local file systems
• Forte Developer: Documentation (Forte, C, C++, dbx, OpenMP, tcov)

(/opt/SUNWspro/docs/index.html)
• HPC ClusterTools 5 Documentation (MPI, Prism, S3L)

(/opt/SUNWhpc/doc/index.html)

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 45

9.2 Third party products
• TotalView

(http://www.etnus.com)
• KAP Pro/Toolset

(http://support.rz.rwth-aachen.de/Manuals/KAI/KAP_Pro_Reference.pdf,
http://developer.intel.com/software/products/kappro/)

• Vampir and VampirTrace
(http://support.rz.rwth-aachen.de/Manuals/Vampir/Vampir-userguide.pdf,
http://support.rz.rwth-aachen.de/Manuals/Vampir/Vampirtrace-userguide.pdf,
http://www.pallas.com)

• KCC
(http://support.rz.rwth-aachen.de/Manuals/KAI/KCC_docs/index.html,
http://developer.intel.com/software/products/kcc/)

• Foresys
(http://www.simulog.fr)

9.3 Public domain software
• mpich – Eine portierbare Implementierung von MPI

(http://www-unix.mcs.anl.gov/mpi/mpich)
• PCL Performance Counter Library

(http://www.fz-juelich.de/zam/PCL)

9.4 Problems and inquiries
• Helpdesk of the computer center (web interface)

(http://www.rz.rwth-aachen.de/computing/support/)

46 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

10 Miscellaneous

10.1 Other Useful commands

/opt/SUNWspro/bin/dmake Parallel make (compare gmake)
/usr/bin/csplit Splits C programs
/opt/SUNWspro/bin/fsplit Splits Fortran programs
/usr/ccs/bin/nm Prints the name list of object programs
/usr/bin/ldd Prints the dynamic dependencies of

executable programs
/opt/SUNWspro/bin/lint More accurate syntax examination of C

programs
/opt/SUNWspro/bin/cflow Prints the call hierarchy of a C program
/opt/SUNWspro/bin/cxref Cross reference list of a C program
/opt/SUNWspro/bin/ctrace Tracing of a C program
/opt/SUNWspro/bin/dumpstabs Analysis of an object program
/usr/bin/showrev Prints the software status of the

machine
/usr/bin/ptime
/usr/bin/pstack
/usr/bin/ptree
/usr/bin/pmap

Analysis of the /proc directory

/usr/sbin/sysdef system parameters
/usr/sbin/prtconf system configuration
/usr/platform/SUNW,Sun-
Fire/sbin/prtdiag

diagnostic messages

/usr/sbin/psrinfo processor information
/usr/bin/pkginfo installed software packages
/opt/SUNWspro/bin/fpversion processor information
/usr/dt/bin/sdtprocess process list (compare top)
/usr/bin/sar system activity report
/usr/bin/truss log system calls
/usr/bin/sotruss log of shared library calls
ld.so.1 Run time linker for dynamic objects
/usr/bin/vmstat status of the virtual memory

organization
/usr/bin/iostat I/O statistics
/usr/bin/busstat system bus performance counters
/usr/bin/prstat Report active process statistics
gettimeofday
#include <sys/time.h>

Portable real time counter

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 47

11 Appendix: Debugging with TotalView on the Sun Fire
SMP-Cluster - Quick Reference Guide

This quick reference guide describes how to debug serial and parallel (OpenMP and MPI)
programs written in C, C++ or Fortran90 using the TotalView debbuger from Etnus Inc. on the
RWTH Sun Fire SMP-Cluster in a very condensed form. Here is a list of the current software
versions: Solaris 8 and 9, TotalView 6.3, Sun ONE Studio 8 compilers, Sun HPC ClusterTools 5.0,
KAP/Pro Toolset 4.0.
For further information see www.etnus.com or
www.rz.rwth-aachen.de/computing/hpc/prog/debug/totalview.

11.1 Debugging serial programs

11.1.1 Some general hints for using TotalView
• Click your middle mouse button to dive on things in order to get more information.
• Return (undive) by clicking on the (�) button, if available.
• You can change all values, which are highlighted.
• If at any time the source pane of the process window shows disassembled machine code,

then the program is stopped in some internal routine. Select the first user routine in the
Stack Trace Pane in order to see, where this internal routine has been evoked.

11.1.2 Compiling and Linking
Before debugging, compile your program with the –g option and without any optimisation. You do
not need to use the –g option on your link command.

11.1.3 Starting TotalView
You can debug your program
• by either starting totalview with your program as a parameter

 totalview a.out [-a options]
• or by starting your program first and than attaching totalview to it. In this case start

totalview
which first opens its root window. Select your program after pushing Unattached.

• You can also analyse the core dump after your program crashed by
totalview a.out core

Startup Parameters (runtime arguments, environment variables, standard IO) can be set in the
Process > Start Parameters … menu.
After starting your program TotalView open the Process Window. It consists of

• the Source Pane, displaying your program’s source code,
• the Stack Trace Pane, displaying the call stack.
• the Stack Frame Pane, displaying all the variables associated with the stack routine

selected
• the Threads Pane, showing the threads of the current process.
• the Action Points Pane, listing all breakpoints, action points and evaluation points.

48 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

11.1.4 Setting a breakpoint
• If the right function is already displayed in the Source Pane, just click on a boxed line

number of an executable statement once to set a breakpoint. Clicking again will delete the
breakpoint.

• Search the function with the View > Lookup Function command first.
• If the function is in the current call stack, dive on it’s name in the Stack Trace Pane

first.
• Select Action Points > At Location and input the function’s name.

11.1.5 Starting, Stopping and Restarting your program
• Start your program by selecting Go on the icon bar and stop it by selecting Halt.
• Set a breakpoint and select Go to run the program until it reaches the line containing the

breakpoint.
• Select a program line and click on Run To on the icon bar.
• Step though a program line by line with the Step and Next commands. Step steps into

and Next jumps over function calls.
• Leave the current function with the Out command.
• To restart a program, select Group > Restart.

11.1.6 Printing a variable
• The values of simple actual variables are displayed in the Stack Frame Pane of the

Process Window.
• You may use the View > Lookup Variable command.
• When you dive (middle click) on a variable, a separate Variable Window will be

opened.
• You can change the variable type in the Variable Window (type casting).
• If you are displaying an array, the Slice and Filter fields lets you select which subset

of the array will be shown. (Examples: Slice: (3:5,1:10:2) , Filter: > 30)
• One and two-dimensional arrays or array slices can be graphically displayed by selecting

Tools > Visualize in the Variable Window.
• If you are displaying a structure, you can look at substructures by rediving or by using the

Window > Dive Anew command or by selection of Dive Anew after clicking on the
left mouse button.

11.1.7 Action Points: breakpoints, evaluation points, watchpoints
• The program will stop, when it hits a breakpoint.
• You can temporarily introduce some additional C or Fortran style program lines at an

evaluation point. After creating a breakpoint, right-click on the STOP sign and select
Properties > Evaluate to type in your new program lines.
Examples:

an additional print statement:
(Fortran write is not
accepted)

printf (“x = %f\n”,
x/20)

conditional breakpoint: if (i == 20) $stop

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 49

stop after every 20
executions:

$count 20

jump to program line 78: goto $78
Visualize an array $visualize a

• A watchpoint monitors a variable’s value. Whenever the content of this variable (memory
location) changes, the program stops. To set a watchpoint, dive on the variable to display its
Variable Window and the select the Tools > Watchpoint command.

• You can save / reload your actions points by selecting Action Point > Save All
resp. Load All.

11.2 Debugging parallel programs

11.2.1 Some general hints for parallel debugging
• If possible, make sure that your serial program runs fine first.
• Debugging a parallel program is not always easy. Use as few MPI processes / OpenMP

threads as possible. Can you reproduce your problem with only one or two processes /
threads?

• Get familiar with using TotalView by debugging a serial toy program first.

11.2.2 Debugging MPI programs

11.2.2.1 Starting TotalView
• You can start debugging your MPI program by

totalview mprun –a ... -W –np nprocs a.out [options]
The root window will at first display the mprun process itself, in which you might not be
interested at all.
Add /opt/SUNWhpc/lib and /usr/platform to the file path prefix list of dynamic
libraries in the File > Preferences > Dynamic Libraries menu and select select
Stop the group in the File > Preferences > Parallel menu.
After clicking on the Go button in the process window, mprun is started and all the
nprocs MPI user processes are started by mprun. They are automatically acquired by
totalview and displayed in the root window.
The process window will display your MPI root process.

• You can as well attach to a running MPI program. Find out the process id of the mprun
command first with the mpps –b command and then start totalview. After selecting
File > New Program, type mprun in the Executable field and its PID in the
Process ID field. If TotalView is running on a different node than mprun, enter the host
name in the Remote Host field as well.

You may switch to another MPI process by
• Clicking on another process in the root window
• Circulating through the attached processes with the P- or P+ buttons in the process window
Open another process window by clicking on one of the attached processes in the root window with
your right mouse button and selecting Dive Anew

11.2.2.2 Setting a breakpoint
Right clicking on a breakpoint symbol you can specify its properties. A breakpoint will stop the

50 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

whole process group (all MPI processes, default) or only one process. In case you want to
synchronize all processes at this location you have to change the breakpoint into a barrier by right
clicking on a line number and selecting Set Barrier in the pull down menu.
It is a good starting point to set and run into a barrier somewhere after the MPI initialisation phase.
Displaying and laminating the rank id after an initial call of MPI_Comm_rank reveils, if the MPI
startup went well.

11.2.2.3 Starting, Stopping and Restarting your program
You can perform stop, start, step, and examine single processes or groups of processes. Choose
Group (default) or Process in the first pulldown menu of the toolbar.

11.2.2.4 Printing a variable
You can examine the value of variables of all MPI processes by selecting View > Laminate in
a variable window.
Laminated scalar variables or one-dimensional arrays or array slices can be graphically visualized.
The rank id is interpreted as an additional dimension.

11.2.2.5 Message Queues
You can look into outstanding non-blocking message passing operations with the Tools >
Message Queue Window or the Tools > Message Queue Graph

11.2.3 Debugging OpenMP programs

11.2.3.1 Some general hints for debugging OpenMP programs
In the case you are using Fortran, does the serial program compiled with f95 –stackvar –xO3 …
(Sun) run correctly? Check the compiler’s messages in the *.lst files after adding the –XlistMP
option!
Typical OpenMP coding errors cause data races which can be detected with the Assure tool from
KAI/Intel. It is very unlikely that you will detect a data race in a debugging session.

11.2.3.2 Compiling
The Sun compilers' –xopenmp and –xautopar compiler switches automatically evoke high
optimisation (-xO3). Since Studio 8 you can use the –xopenmp=noopt -g switches for C
and Fortran (but not for C++). As an alternative you can use the Guide OpenMP-compilers of
KAI’s KAP/Pro Toolset in combination with TotalView:
Compile your code with

guidef90|guidec|guidec++ -WG,-cmpo=i [-WGkeepcpp] –g …

11.2.3.3 Starting TotalView
Start debugging your OpenMP program after specifying the number of threads you want to use

OMP_NUM_THREADS=nthreads totalview a.out
The parallel regions of an OpenMP program are outlined into separate subroutines. Shared
variables are passed as call parameters to the outlined routine and private variables are defined

The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003 51

locally. A parallel region cannot be entered stepwise, but only by running into a breakpoint.

11.2.3.4 Setting a breakpoint
Right clicking on a breakpoint symbol you can specify its properties. A breakpoint will stop the
whole process (group) by default or only the thread for which the breakpoint is defined. In case
you want to synchronize all processes at this location you have to change the breakpoint into a
barrier by right clicking on a line number and selecting Set Barrier in the pull down menu.

11.2.3.5 Starting, Stopping and Restarting your program
You can perform stop, start, step, and examine single threads or the whole process (group). Choose
Group (default) or Process or Thread in the first pulldown menu of the toolbar.

11.2.3.6 Printing a variable
You can examine the value of variables of all threads by selecting View > Laminate in a
variable window.
Laminated scalar variables or one-dimensional arrays or array slices can be graphically visualized.
The thread id is interpreted as an additional dimension.

52 The RWTH Sun Fire SMP-Cluster User's Guide, Version 3.1, July 2003

