Skip Headers

Oracle9i Data Mining Concepts
Release 9.2.0.2

Part Number A95961-02
Go to Documentation Home
Home
Go to Book List
Book List
Go to Table of Contents
Contents
Go to Index
Index
Go to Master Index
Master Index
Go to Feedback page
Feedback

Go to previous page
View PDF

Index

A  B  C  D  E  F  G  I  J  K  L  M  N  O  P  R  S  T  U 


A

Adaptive Bayes Network (ABN), 1-2, 1-10
algorithms, 1-9
settings for, 1-20, 1-26
apply model, 2-5
apply result object, 1-29
ApplyContentItem, 3-12
Apriori algorithm, 1-4, 1-18
Association Rules, 1-2, 1-4, 1-7
sample programs, A-6
support and confidence, 1-8
Attribute Importance, 1-2, 1-4, 1-8, 1-18
sample programs, A-6
using, 2-4
attribute names and case, 1-28
attributes
find, 2-4
use, 2-4
automated binning (see also discretization), 1-2

B

balance
in data sample, 1-6
Bayes' Theorem, 1-12, 1-13
best model
find, 2-3
in Model Seeker, 1-14
binning, 1-32
automated, 1-2
for k-means, 1-16
for O-Cluster, 1-17
manual, 1-32
sample programs, A-7
build data
describe, 3-4
build model, 3-7
build result object, 1-29

C

categorical data type, 1-2
character sets
CLASSPATH, 2-1
classification, 1-4
specifying default algorithm, 3-5
specifying Naive Bayes, 3-6
CLASSPATH for ODM, 2-1
clustering, 1-2, 1-4, 1-6, 1-15
sample programs, A-5
compiling sample programs, A-22
Complete single feature, ABN parameter, 1-12
computing Lift, 1-22
confidence
of association rule, 1-8
confusion matrix, 1-29
figure, 1-29
continuous data type, 1-17
costs
of incorrect decision, 1-5
cross-validation, 1-13

D

data
scoring, 3-8
data format
figure, 1-25
data mining API, 1-3
data mining components, 1-3
data mining functions, 1-4
data mining server (DMS), 1-3, 1-20, 1-25
connect to, 3-3, 3-9
data mining tasks, 1-19
data mining tasks per function, 1-20
data preprocessing, 1-6
data scoring
main steps, 3-9
output data, 3-11
prerequisites, 3-8
data types, 1-2
data usage specification (DUS) object, 1-27
decision trees, 1-2, 1-10
discretization (binning), 1-32
sample programs, A-7
distance-based clustering model, 1-15
DMS
connect to, 3-3, 3-9

E

enhanced k-means algorithm, 1-15
executing sample programs, A-22

F

feature
definition, 1-10
feature selection, 1-2
features
new, 1-2
function settings, 1-20
functions
data mining, 1-4

G

global property file, A-11
grid-based clustering model, 1-17

I

incremental approach
in k-means, 1-15
input
to apply phase, 1-30
input columns
including in mining apply output, 3-13
input data
data scoring, 3-10
describe, 3-10

J

jar files
ODM, 2-1
Java Data Mining (JDM), 1-3
Java Specification Request (JSR-73), 1-3

K

key fields, 1-2
k-means, 1-2
k-means algorithm, 1-4, 1-15
binning for, 1-16
k-means and O-Cluster (table), 1-17

L

learning
supervised, 1-2, 1-4
unsupervised, 1-2, 1-4
leave-one-out cross-validation, 1-13
lift result object, 1-29
location access data
apply output, 3-11
build, 3-4
data scoring, 3-10
logical data specification (LDS) object, 1-27

M

market basket analysis, 1-7
max build parameters
in ABN, 1-11
MaximumNetworkFeatureDepth, ABN parameter, 1-11
metadata repository, 1-3
MFS, 3-5
validate, 3-6
mining algorithm settings object, 1-26
mining apply
output data, 3-11
mining apply output, 1-30
mining attribute, 1-27
mining function settings
build, 3-5
creating, 3-5
validate, 3-6
mining function settings (MFS) object, 1-25
mining model object, 1-28
mining result object, 1-28
mining tasks, 1-3
MiningApplyOutput object, 3-11
MiningFunctionSettings object, 3-5
missing values, 1-32
mixture model, 1-16
model
apply, 3-1
build
synchronous, 3-7
building, 3-1
score, 3-1
model apply, 2-5, 3-8, 3-14
ApplyContentItem, 3-12
ApplyMutipleScoringItem, 3-12
ApplyTargetProbabilityItem, 3-12
asynchronous, 3-15
data format, 2-5
generated columns in output, 3-12
including input columns in output, 3-13
input data, 3-10
main steps, 3-9
physical data specification, 3-10
specify output format, 3-11
synchronous, 3-14
validate output object, 3-14
model apply (figure), 1-23
model apply (scoring), 1-22
model build
asynchronous, 3-7
model building, 1-20
main steps, 3-3
outline, 2-2
overview, 3-3
prerequisites, 3-2
model building (figure), 1-21
Model Seeker, 1-2, 1-14
sample programs, A-5
using, 2-3
model testing, 1-21
multi-record case (transactional format), 1-24

N

Naive Bayes, 1-2
algorithm, 1-12
building models, 3-2
sample programs, 3-1, A-4
specifying, 3-6
nontransactional data format, 1-24
numerical data type, 1-2, 1-15, 1-17

O

O-Cluster, 1-2
algorithm, 1-17
sample programs, A-5
ODM
basic usage, 3-1
ODM algorithms, 1-9
ODM functionality, 1-24
ODM functions, 1-4
ODM jar files, 2-1
ODM models
building, 3-2
ODM objects, 1-24
ODM programming, 2-1
basic usage, 3-1
common tasks, 2-2
overview, 2-1
ODM programs
compiling, 2-1
executing, 2-1
ODM sample programs, A-1
Oracle9i Data Mining API, 1-3

P

physical data specification
build
nontransactional, 3-4
transactional, 3-5
data scoring, 3-10
model apply, 3-10
nontransactional, 3-10
transactional, 3-10
physical data specification (PDS), 1-24
PhysicalDataSpecification, 3-10
PMML
sample programs, A-6
PMML export
sample program, A-6
PMML import
sample program, A-6
Predictive Model Markup Language (PMML), 1-2, 1-3, 1-37
Predictor Variance algorithm, 1-18
preprocessing
data, 1-6
priors information, 1-5
property files
sample programs, A-10

R

rules
decision tree, 1-10

S

sample
programs
Naive Bayes, 3-1
sample programs, A-1
Association Rules, A-6
Attribute Importance, A-6
basic usage, A-3
binning, A-7
classification, 3-5
clustering, A-5
compiling all, A-25
compiling and executing, A-22
data, A-9
discretization, A-7
executing all, A-26
global property file, A-11
Model Seeker, A-5
Naive Bayes, A-3, A-4
Naive Bayes models, A-4
O-Cluster, A-5
overview, A-1
PMML export, A-6
PMML import, A-6
property files, A-10
requirements, A-2
short, 3-1
short programs, A-3
summary, A-3
using, A-7
score data, 2-5
scoring, 1-5, 1-16, 1-22
by O-Cluster, 1-17
output data, 3-11
prerequisites, 3-8
scoring data, 3-8
sequence of ODM tasks, 2-3
short sample programs, 3-1, A-3
compiling and executing, A-22
single-record case (nontransactional format), 1-24
skewed data sample, 1-5
SQL/MM for Data Mining, 1-3
summarization, 1-18
in k-means, 1-16
supervised learning, 1-2, 1-4
support
of association rule, 1-8

T

test result object, 1-29
transactional data format, 1-24

U

unsupervised learning, 1-2, 1-4
unsupervised model, 1-14