Oracle9i Data Warehousing Guide Release 2 (9.2) Part Number A96520-01 |
|
This chapter discusses aggregation of SQL, a basic aspect of data warehousing. It contains these topics:
Aggregation is a fundamental part of data warehousing. To improve aggregation performance in your warehouse, Oracle provides the following extensions to the GROUP
BY
clause:
The CUBE
, ROLLUP
, and GROUPING
SETS
extensions to SQL make querying and reporting easier and faster. ROLLUP
calculates aggregations such as SUM
, COUNT
, MAX
, MIN
, and AVG
at increasing levels of aggregation, from the most detailed up to a grand total. CUBE
is an extension similar to ROLLUP
, enabling a single statement to calculate all possible combinations of aggregations. CUBE
can generate the information needed in cross-tabulation reports with a single query.
CUBE
, ROLLUP
, and the GROUPING
SETS
extension let you specify exactly the groupings of interest in the GROUP
BY
clause. This allows efficient analysis across multiple dimensions without performing a CUBE
operation. Computing a full cube creates a heavy processing load, so replacing cubes with grouping sets can significantly increase performance. CUBE
, ROLLUP
, and grouping sets produce a single result set that is equivalent to a UNION
ALL
of differently grouped rows.
To enhance performance, CUBE
, ROLLUP
, and GROUPING
SETS
can be parallelized: multiple processes can simultaneously execute all of these statements. These capabilities make aggregate calculations more efficient, thereby enhancing database performance, and scalability.
The three GROUPING
functions help you identify the group each row belongs to and enable sorting subtotal rows and filtering results.
See Also:
Oracle9i SQL Reference for further details |
One of the key concepts in decision support systems is multidimensional analysis: examining the enterprise from all necessary combinations of dimensions. We use the term dimension to mean any category used in specifying questions. Among the most commonly specified dimensions are time, geography, product, department, and distribution channel, but the potential dimensions are as endless as the varieties of enterprise activity. The events or entities associated with a particular set of dimension values are usually referred to as facts. The facts might be sales in units or local currency, profits, customer counts, production volumes, or anything else worth tracking.
Here are some examples of multidimensional requests:
All these requests involve multiple dimensions. Many multidimensional questions require aggregated data and comparisons of data sets, often across time, geography or budgets.
To visualize data that has many dimensions, analysts commonly use the analogy of a data cube, that is, a space where facts are stored at the intersection of n dimensions. Figure 18-1 shows a data cube and how it can be used differently by various groups. The cube stores sales data organized by the dimensions of product
, market
, sales
, and time
. Note that this is only a metaphor: the actual data is physically stored in normal tables. The cube data consists of both detail and aggregated data.
You can retrieve slices of data from the cube. These correspond to cross-tabular reports such as the one shown in Table 18-1. Regional managers might study the data by comparing slices of the cube applicable to different markets. In contrast, product managers might compare slices that apply to different products. An ad hoc user might work with a wide variety of constraints, working in a subset cube.
Answering multidimensional questions often involves accessing and querying huge quantities of data, sometimes in millions of rows. Because the flood of detailed data generated by large organizations cannot be interpreted at the lowest level, aggregated views of the information are essential. Aggregations, such as sums and counts, across many dimensions are vital to multidimensional analyses. Therefore, analytical tasks require convenient and efficient data aggregation.
Not only multidimensional issues, but all types of processing can benefit from enhanced aggregation facilities. Transaction processing, financial and manufacturing systems--all of these generate large numbers of production reports needing substantial system resources. Improved efficiency when creating these reports will reduce system load. In fact, any computer process that aggregates data from details to higher levels will benefit from optimized aggregation performance.
Oracle9i extensions provide aggregation features and bring many benefits, including:
To illustrate the use of the GROUP
BY
extension, this chapter uses the sh
data of the sample schema. All the examples refer to data from this scenario. The hypothetical company has sales across the world and tracks sales by both dollars and quantities information. Because there are many rows of data, the queries shown here typically have tight constraints on their WHERE
clauses to limit the results to a small number of rows.
Table 18-1 is a sample cross-tabular report showing the total sales by country_id
and channel_desc
for the US and UK through the Internet and direct sales in September 2000.
Channel | Country | ||
---|---|---|---|
UK |
US |
Total |
|
Direct Sales |
1,378,126 |
2,835,557 |
4,213,683 |
Internet |
911,739 |
1,732,240 |
2,643,979 |
Total |
2,289,865 |
4,567,797 |
6,857,662 |
Consider that even a simple report such as this, with just nine values in its grid, generates four subtotals and a grand total. The subtotals are the shaded numbers. Half of the values needed for this report would not be calculated with a query that requested SUM
(amount_sold
) and did a GROUP
BY
(channel_desc, country_id
). To get the higher-level aggregates would require additional queries. Database commands that offer improved calculation of subtotals bring major benefits to querying, reporting, and analytical operations.
SELECT channel_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc='2000-09' AND country_id IN ('UK', 'US') GROUP BY CUBE(channel_desc, country_id); CHANNEL_DESC CO SALES$ -------------------- -- -------------- Direct Sales UK 1,378,126 Direct Sales US 2,835,557 Direct Sales 4,213,683 Internet UK 911,739 Internet US 1,732,240 Internet 2,643,979 UK 2,289,865 US 4,567,797 6,857,662
NULLs
returned by the GROUP
BY
extensions are not always the traditional null meaning value unknown. Instead, a NULL
may indicate that its row is a subtotal. To avoid introducing another non-value in the database system, these subtotal values are not given a special tag.
See "GROUPING Functions" for details on how the NULLs
representing subtotals are distinguished from NULLs
stored in the data.
ROLLUP
enables a SELECT
statement to calculate multiple levels of subtotals across a specified group of dimensions. It also calculates a grand total. ROLLUP
is a simple extension to the GROUP
BY
clause, so its syntax is extremely easy to use. The ROLLUP
extension is highly efficient, adding minimal overhead to a query.
The action of ROLLUP
is straightforward: it creates subtotals that roll up from the most detailed level to a grand total, following a grouping list specified in the ROLLUP
clause. ROLLUP
takes as its argument an ordered list of grouping columns. First, it calculates the standard aggregate values specified in the GROUP
BY
clause. Then, it creates progressively higher-level subtotals, moving from right to left through the list of grouping columns. Finally, it creates a grand total.
ROLLUP
creates subtotals at n+1 levels, where n is the number of grouping columns. For instance, if a query specifies ROLLUP
on grouping columns of time
, region
, and department
(n=3), the result set will include rows at four aggregation levels.
You might want to compress your data when using ROLLUP
. This is particularly useful when there are few updates to older partitions.
See Also:
Oracle9i SQL Reference for data compression syntax and restrictions |
Use the ROLLUP
extension in tasks involving subtotals.
ROLLUP(y,
m,
day)
or ROLLUP(country,
state,
city)
.ROLLUP
can simplify and speed up the maintenance of summary tables.ROLLUP
appears in the GROUP
BY
clause in a SELECT
statement. Its form is:
SELECT ... GROUP BY ROLLUP(grouping_column_reference_list)
This example uses the data in the sales history store data, the same data as was used in Example 18-1. The ROLLUP
is across three dimensions.
SELECT channel_desc, calendar_month_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_id);CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet 5,414,303
13,924,743
Note that results do not always add due to rounding.
This query returns the following sets of rows:
GROUP
BY
without using ROLLUP
country_id
for each combination of channel_desc
and calendar_month
calendar_month_desc
and country_id
for each channel_desc
valueYou can also roll up so that only some of the sub-totals will be included. This partial rollup uses the following syntax:
GROUP BY expr1, ROLLUP(expr2, expr3);
In this case, the GROUP
BY
clause creates subtotals at (2+1=3) aggregation levels. That is, at level (expr1
, expr2
, expr3
), (expr1
, expr2
), and (expr1
).
SELECT channel_desc, calendar_month_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY channel_desc, ROLLUP(calendar_month_desc, country_id); CHANNEL_DESC CALENDAR CO SALES$ -------------------- -------- -- -------------- Direct Sales 2000-09 UK 1,378,126 Direct Sales 2000-09 US 2,835,557 Direct Sales 2000-09 4,213,683 Direct Sales 2000-10 UK 1,388,051 Direct Sales 2000-10 US 2,908,706 Direct Sales 2000-10 4,296,757 Direct Sales 8,510,440 Internet 2000-09 UK 911,739 Internet 2000-09 US 1,732,240 Internet 2000-09 2,643,979 Internet 2000-10 UK 876,571 Internet 2000-10 US 1,893,753 Internet 2000-10 2,770,324 Internet 5,414,303
This query returns the following sets of rows:
GROUP
BY
without using ROLLUP
country_id
for each combination of channel_desc
and calendar_month_desc
calendar_month_desc
and country_id
for each channel_desc
valueCUBE
takes a specified set of grouping columns and creates subtotals for all of their possible combinations. In terms of multidimensional analysis, CUBE
generates all the subtotals that could be calculated for a data cube with the specified dimensions. If you have specified CUBE(time
, region
, department)
, the result set will include all the values that would be included in an equivalent ROLLUP
statement plus additional combinations. For instance, in Example 18-1, the departmental totals across regions (279,000 and 319,000) would not be calculated by a ROLLUP(time
, region
, department)
clause, but they would be calculated by a CUBE(time
, region
, department)
clause. If n columns are specified for a CUBE
, there will be 2 to the n combinations of subtotals returned. Example 18-3 gives an example of a three-dimension cube.
See Also:
Oracle9i SQL Reference for syntax and restrictions |
Consider Using CUBE
in any situation requiring cross-tabular reports. The data needed for cross-tabular reports can be generated with a single SELECT
using CUBE
. Like ROLLUP
, CUBE
can be helpful in generating summary tables. Note that population of summary tables is even faster if the CUBE
query executes in parallel.
See Also:
Chapter 21, "Using Parallel Execution" for information on parallel execution |
CUBE
is typically most suitable in queries that use columns from multiple dimensions rather than columns representing different levels of a single dimension. For instance, a commonly requested cross-tabulation might need subtotals for all the combinations of month
, state
, and product
. These are three independent dimensions, and analysis of all possible subtotal combinations is commonplace. In contrast, a cross-tabulation showing all possible combinations of year
, month
, and day
would have several values of limited interest, because there is a natural hierarchy in the time
dimension. Subtotals such as profit by day of month summed across year would be unnecessary in most analyses. Relatively few users need to ask "What were the total sales for the 16th of each month across the year?" See "Hierarchy Handling in ROLLUP and CUBE" for an example of handling rollup calculations efficiently.
CUBE
appears in the GROUP
BY
clause in a SELECT
statement. Its form is:
SELECT ... GROUP BY CUBE (grouping_column_reference_list)
SELECT channel_desc, calendar_month_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY CUBE(channel_desc, calendar_month_desc, country_id);CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales UK 2,766,177
Direct Sales US 5,744,263
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet UK 1,788,310
Internet US 3,625,993
Internet 5,414,303
2000-09 UK 2,289,865
2000-09 US 4,567,797
2000-09 6,857,662
2000-10 UK 2,264,622
2000-10 US 4,802,459
2000-10 7,067,081
UK 4,554,487
US 9,370,256
13,924,743
This query illustrates CUBE
aggregation across three dimensions.
Partial CUBE
resembles partial ROLLUP
in that you can limit it to certain dimensions and precede it with columns outside the CUBE
operator. In this case, subtotals of all possible combinations are limited to the dimensions within the cube list (in parentheses), and they are combined with the preceding items in the GROUP
BY
list.
GROUP BY expr1, CUBE(expr2, expr3)
This syntax example calculates 2*2, or 4, subtotals. That is:
Using the sales
database, you can issue the following statement:
SELECT channel_desc, calendar_month_desc, country_id,
TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
sales.cust_id=customers.cust_id AND
sales.channel_id= channels.channel_id AND
channels.channel_desc IN ('Direct Sales', 'Internet') AND
times.calendar_month_desc IN ('2000-09', '2000-10')
AND country_id IN ('UK', 'US')
GROUP BY channel_desc, CUBE(calendar_month_desc, country_id);
CHANNEL_DESC CALENDAR CO SALES$
-------------------- -------- -- --------------
Direct Sales 2000-09 UK 1,378,126
Direct Sales 2000-09 US 2,835,557
Direct Sales 2000-09 4,213,683
Direct Sales 2000-10 UK 1,388,051
Direct Sales 2000-10 US 2,908,706
Direct Sales 2000-10 4,296,757
Direct Sales UK 2,766,177
Direct Sales US 5,744,263
Direct Sales 8,510,440
Internet 2000-09 UK 911,739
Internet 2000-09 US 1,732,240
Internet 2000-09 2,643,979
Internet 2000-10 UK 876,571
Internet 2000-10 US 1,893,753
Internet 2000-10 2,770,324
Internet UK 1,788,310
Internet US 3,625,993
Internet 5,414,303
Just as for ROLLUP
, multiple SELECT
statements combined with UNION
ALL
statements could provide the same information gathered through CUBE
. However, this might require many SELECT
statements. For an n-dimensional cube, 2 to the n SELECT
statements are needed. In the three-dimension example, this would mean issuing SELECT
statements linked with UNION
ALL
. So many SELECT
statements yield inefficient processing and very lengthy SQL.
Consider the impact of adding just one more dimension when calculating all possible combinations: the number of SELECT
statements would double to 16. The more columns used in a CUBE
clause, the greater the savings compared to the UNION
ALL
approach.
Two challenges arise with the use of ROLLUP
and CUBE
. First, how can you programmatically determine which result set rows are subtotals, and how do you find the exact level of aggregation for a given subtotal? You often need to use subtotals in calculations such as percent-of-totals, so you need an easy way to determine which rows are the subtotals. Second, what happens if query results contain both stored NULL
values and "NULL" values created by a ROLLUP
or CUBE
? How can you differentiate between the two?
See Also:
Oracle9i SQL Reference for syntax and restrictions |
GROUPING
handles these problems. Using a single column as its argument, GROUPING
returns 1 when it encounters a NULL
value created by a ROLLUP
or CUBE
operation. That is, if the NULL
indicates the row is a subtotal, GROUPING
returns a 1. Any other type of value, including a stored NULL
, returns a 0.
GROUPING
appears in the selection list portion of a SELECT
statement. Its form is:
SELECT ... [GROUPING(dimension_column)...] ... GROUP BY ... {CUBE | ROLLUP| GROUPING SETS} (dimension_column)
This example uses GROUPING
to create a set of mask columns for the result set shown in Example 18-3. The mask columns are easy to analyze programmatically.
SELECT channel_desc, calendar_month_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$, GROUPING(channel_desc) as Ch, GROUPING(calendar_month_desc) AS Mo, GROUPING(country_id) AS Co FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_id); CHANNEL_DESC CALENDAR CO SALES$ CH MO CO -------------------- -------- -- -------------- --------- --------- --------- Direct Sales 2000-09 UK 1,378,126 0 0 0 Direct Sales 2000-09 US 2,835,557 0 0 0 Direct Sales 2000-09 4,213,683 0 0 1 Direct Sales 2000-10 UK 1,388,051 0 0 0 Direct Sales 2000-10 US 2,908,706 0 0 0 Direct Sales 2000-10 4,296,757 0 0 1 Direct Sales 8,510,440 0 1 1 Internet 2000-09 UK 911,739 0 0 0 Internet 2000-09 US 1,732,240 0 0 0 Internet 2000-09 2,643,979 0 0 1 Internet 2000-10 UK 876,571 0 0 0 Internet 2000-10 US 1,893,753 0 0 0 Internet 2000-10 2,770,324 0 0 1 Internet 5,414,303 0 1 1 13,924,743 1 1 1
A program can easily identify the detail rows by a mask of "0 0 0" on the T
, R
, and D
columns. The first level subtotal rows have a mask of "0 0 1", the second level subtotal rows have a mask of "0 1 1", and the overall total row has a mask of "1 1 1".
You can improve the readability of result sets by using the GROUPING
and DECODE
functions as shown in Example 18-7.
SELECT DECODE(GROUPING(channel_desc), 1, 'All Channels', channel_desc) AS Channel, DECODE(GROUPING(country_id), 1, 'All Countries', country_id) AS Country, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc= '2000-09' AND country_id IN ('UK', 'US') GROUP BY CUBE(channel_desc, country_id); CHANNEL COUNTRY SALES$ -------------------- ------------- -------------- Direct Sales UK 1,378,126 Direct Sales US 2,835,557 Direct Sales All Countries 4,213,683 Internet UK 911,739 Internet US 1,732,240 Internet All Countries 2,643,979 All Channels UK 2,289,865 All Channels US 4,567,797 All Channels All Countries 6,857,662
To understand the previous statement, note its first column specification, which handles the channel_desc
column. Consider the first line of the previous statement:
SELECT DECODE(GROUPING(channel_desc), 1, 'All Channels', channel_desc)AS Channel
In this, the channel_desc
value is determined with a DECODE
function that contains a GROUPING
function. The GROUPING
function returns a 1 if a row value is an aggregate created by ROLLUP
or CUBE
, otherwise it returns a 0. The DECODE
function then operates on the GROUPING
function's results. It returns the text "All Channels" if it receives a 1 and the channel_desc
value from the database if it receives a 0. Values from the database will be either a real value such as "Internet" or a stored NULL
. The second column specification, displaying country_id
, works the same way.
The GROUPING
function is not only useful for identifying NULLs
, it also enables sorting subtotal rows and filtering results. In Example 18-8, you retrieve a subset of the subtotals created by a CUBE
and none of the base-level aggregations. The HAVING
clause constrains columns that use GROUPING
functions.
SELECT channel_desc, calendar_month_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$, GROUPING(channel_desc) CH, GROUPING(calendar_month_desc) MO, GROUPING(country_id) CO FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY CUBE(channel_desc, calendar_month_desc, country_id) HAVING (GROUPING(channel_desc)=1 AND GROUPING(calendar_month_desc)= 1 AND GROUPING(country_id)=1) OR (GROUPING(channel_desc)=1 AND GROUPING(calendar_month_desc)= 1) OR (GROUPING(country_id)=1 AND GROUPING(calendar_month_desc)= 1); CHANNEL_DESC C CO SALES$ CH MO CO -------------------- - -- -------------- --------- --------- --------- UK 4,554,487 1 1 0 US 9,370,256 1 1 0 Direct Sales 8,510,440 0 1 1 Internet 5,414,303 0 1 1 13,924,743 1 1 1
Compare the result set of Example 18-8 with that in Example 18-3 to see how Example 18-8 is a precisely specified group: it contains only the yearly totals, regional totals aggregated over time
and department
, and the grand total.
To find the GROUP
BY
level of a particular row, a query must return GROUPING
function information for each of the GROUP
BY
columns. If we do this using the GROUPING
function, every GROUP
BY
column requires another column using the GROUPING
function. For instance, a four-column GROUP
BY
clause needs to be analyzed with four GROUPING
functions. This is inconvenient to write in SQL and increases the number of columns required in the query. When you want to store the query result sets in tables, as with materialized views, the extra columns waste storage space.
To address these problems, Oracle9i introduces the GROUPING_ID
function. GROUPING_ID
returns a single number that enables you to determine the exact GROUP
BY
level. For each row, GROUPING_ID
takes the set of 1's and 0's that would be generated if you used the appropriate GROUPING
functions and concatenates them, forming a bit vector. The bit vector is treated as a binary number, and the number's base-10 value is returned by the GROUPING_ID
function. For instance, if you group with the expression CUBE(a
, b)
the possible values are as shown in Table 18-2.
Aggregation Level | Bit Vector | GROUPING_ID |
---|---|---|
a, b |
0 0 |
0 |
a |
0 1 |
1 |
b |
1 0 |
2 |
Grand Total |
1 1 |
3 |
GROUPING_ID
clearly distinguishes groupings created by grouping set specification, and it is very useful during refresh and rewrite of materialized views.
While the extensions to GROUP
BY
offer power and flexibility, they also allow complex result sets that can include duplicate groupings. The GROUP_ID
function lets you distinguish among duplicate groupings. If there are multiple sets of rows calculated for a given level, GROUP_ID
assigns the value of 0 to all the rows in the first set. All other sets of duplicate rows for a particular grouping are assigned higher values, starting with 1. For example, consider the following query, which generates a duplicate grouping:
SELECT country_id, cust_state_province, SUM(amount_sold), GROUPING_ID(country_id, cust_state_province) GROUPING_ID, GROUP_ID() FROM sales, customers, times WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND times.time_id= '30-OCT-00' AND country_id IN ('FR', 'ES') GROUP BY GROUPING SETS (country_id, ROLLUP(country_id, cust_state_province)); CO CUST_STATE_PROVINCE SUM(AMOUNT_SOLD) GROUPING_ID GROUP_ID() -- ---------------------------------------- ---------------- ---------- ES Alicante 8939 0 0 ES Almeria 1053 0 0 ES Barcelona 6312 0 0 ES Girona 220 0 0 ES Malaga 8137 0 0 ES Salamanca 324 0 0 ES Valencia 7588 0 0 FR Alsace 5099 0 0 FR Aquitaine 13183 0 0 FR Brittany 3938 0 0 FR Centre 2968 0 0 FR Ile-de-France 16449 0 0 FR Languedoc-Roussillon 20228 0 0 FR Midi-Pyrenees 2322 0 0 FR Pays de la Loire 1096 0 0 FR Provence-Alpes-Cote d'Azur 1208 0 0 FR Rhtne-Alpes 7637 0 0 106701 3 0 ES 32573 1 0 FR 74128 1 0 ES 32573 1 1 FR 74128 1 1
This query generates the following groupings: (country_id
, cust_state_province
), (country_id
), (country_id
), and (). Note that the grouping (country_id
) is repeated twice. The syntax for GROUPING
SETS
is explained in "GROUPING SETS Expression".
This function helps you filter out duplicate groupings from the result. For example, you can filter out duplicate (region
) groupings from the previous example by adding a HAVING
clause condition GROUP_ID()=0
to the query.
You can selectively specify the set of groups that you want to create using a GROUPING
SETS
expression within a GROUP
BY
clause. This allows precise specification across multiple dimensions without computing the whole CUBE
. For example, you can say:
SELECT channel_desc, calendar_month_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY GROUPING SETS((channel_desc, calendar_month_desc, country_id), (channel_desc, country_id), (calendar_month_desc, country_id));
Note that this statement uses composite columns, described in "Composite Columns". This statement calculates aggregates over three groupings:
(channel_desc, calendar_month_desc, country_id)
(channel_desc, country_id)
(calendar_month_desc, country_id)
Compare the previous statement with the following alternative, which uses the CUBE
operation and the GROUPING_ID
function to return the desired rows:
SELECT channel_desc, calendar_month_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$, GROUPING_ID(channel_desc, calendar_month_desc, country_id) gid FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY CUBE(channel_desc, calendar_month_desc, country_id) HAVING GROUPING_ID(channel_desc, calendar_month_desc, country_id)=0 OR GROUPING_ID(channel_desc, calendar_month_desc, country_id)=2 OR GROUPING_ID(channel_desc, calendar_month_desc, country_id)=4;
This statement computes all the 8 (2 *2 *2) groupings, though only the previous 3 groups are of interest to you.
Another alternative is the following statement, which is lengthy due to several unions. This statement requires three scans of the base table, making it inefficient. CUBE
and ROLLUP
can be thought of as grouping sets with very specific semantics. For example, consider the following statement:
CUBE(a, b, c)
This statement is equivalent to:
GROUPING SETS ((a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), ()) ROLLUP(a, b, c)
And this statement is equivalent to:
GROUPING SETS ((a, b, c), (a, b), ())
GROUPING
SETS
syntax lets you define multiple groupings in the same query. GROUP
BY
computes all the groupings specified and combines them with UNION
ALL
. For example, the following statement:
GROUP BY GROUPING sets (channel_desc, calendar_month_desc, country_id )
This statement is equivalent to:
GROUP BY channel_desc UNION ALL GROUP BY calendar_month_desc UNION ALL country_id
Table 18-3 shows grouping sets specification and equivalent GROUP
BY
specification. Note that some examples use composite columns.
In the absence of an optimizer that looks across query blocks to generate the execution plan, a query based on UNION
would need multiple scans of the base table, sales. This could be very inefficient as fact tables will normally be huge. Using GROUPING
SETS
statements, all the groupings of interest are available in the same query block.
A composite column is a collection of columns that are treated as a unit during the computation of groupings. You specify the columns in parentheses as in the following statement:
ROLLUP (year, (quarter, month), day)
In this statement, the data is not rolled up across year and quarter, but is instead equivalent to the following groupings of a UNION
ALL
:
Here, (quarter
, month
) form a composite column and are treated as a unit. In general, composite columns are useful in ROLLUP
, CUBE
, GROUPING
SETS
, and concatenated groupings. For example, in CUBE
or ROLLUP
, composite columns would mean skipping aggregation across certain levels. That is, the following statement:
GROUP BY ROLLUP(a, (b, c))
This is equivalent to:
GROUP BY a, b, c UNION ALL GROUP BY a UNION ALL GROUP BY ()
Here, (b
, c)
are treated as a unit and rollup will not be applied across (b
, c)
. It is as if you have an alias, for example z, for (b
, c)
and the GROUP
BY
expression reduces to GROUP
BY
ROLLUP(a
, z)
. Compare this with the normal rollup as in the following:
GROUP BY ROLLUP(a, b, c)
This would be the following:
GROUP BY a, b, c UNION ALL GROUP BY a, b UNION ALL GROUP BY a UNION ALL GROUP BY ().
Similarly, the following statement:
GROUP BY CUBE((a, b), c)
This would be equivalent to:
GROUP BY a, b, c UNION ALL GROUP BY a, b UNION ALL GROUP BY c UNION ALL GROUP By ()
In GROUPING
SETS
, a composite column is used to denote a particular level of GROUP
BY
. See Table 18-3 for more examples of composite columns.
You do not have full control over what aggregation levels you want with CUBE
and ROLLUP
. For example, the following statement:
SELECT channel_desc, calendar_month_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY ROLLUP(channel_desc, calendar_month_desc, country_id);
This statement results in Oracle computing the following groupings:
(channel_desc, calendar_month_desc, country_id)
(channel_desc, calendar_month_desc)
(channel_desc)
()
If you are just interested in grouping of lines (1), (3) and (4) in this example, you cannot limit the calculation to those groupings without using composite columns. With composite columns, this is possible by treating month and country as a single unit while rolling up. Columns enclosed in parentheses are treated as a unit while computing CUBE
and ROLLUP
. Thus, you would say:
SELECT channel_desc, calendar_month_desc, country_id, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY ROLLUP(channel_desc, (calendar_month_desc, country_id));
Concatenated groupings offer a concise way to generate useful combinations of groupings. Groupings specified with concatenated groupings yield the cross-product of groupings from each grouping set. The cross-product operation enables even a small number of concatenated groupings to generate a large number of final groups. The concatenated groupings are specified simply by listing multiple grouping sets, cubes, and rollups, and separating them with commas. Here is an example of concatenated grouping sets:
GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)
This SQL defines the following groupings:
(a, c), (a, d), (b, c), (b, d)
Concatenation of grouping sets is very helpful for these reasons:
You need not enumerate all groupings manually.
SQL generated by OLAP applications often involves concatenation of grouping sets, with each grouping set defining groupings needed for a dimension.
You can also specify more than one grouping in the GROUP
BY
clause. For example, if you want aggregated sales values for each product rolled up across all levels in the time
dimension (year
, month
and day
), and across all levels in the geography
dimension (region
), you can issue the following statement:
SELECT channel_desc, calendar_year, calendar_quarter_desc, country_id, cust_state_province, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND country_id IN ('UK', 'US') GROUP BY channel_desc, GROUPING SETS (ROLLUP(calendar_year, calendar_quarter_desc), ROLLUP(country_id, cust_state_province));
This results in the following groupings:
channel_desc
, calendar_year
, calendar_quarter_desc
)channel_desc
, calendar_year
)channel_desc
)channel_desc
, country_id
, cust_state_province
)channel_desc
, country_id
)channel_desc
)This is the cross-product of the following:
channel_desc
ROLLUP
(calendar_year
, calendar_quarter_desc
), which is equivalent tocalendar_year
, calendar_quarter_desc
), (calendar_year
), ())ROLLUP(country_id, cust_state_province)
, which is equivalent to ((country_id
, cust_state_province
), (country_id
), ())Note that the output contains two occurrences of (channel_desc
) group. To filter out the extra (channel_desc
) group, the query could use a GROUP_ID
function.
Another concatenated join example is the following, showing the cross product of two grouping sets:
SELECT country_id, cust_state_province,
calendar_year, calendar_quarter_desc,
TO_CHAR(SUM(amount_sold),
'9,999,999,999
') SALES$
FROM sales, customers, times, channels
WHERE sales.time_id=times.time_id AND
sales.cust_id=customers.cust_id AND
sales.channel_id= channels.channel_id AND
channels.channel_desc IN (
'Direct Sales
',
'Internet
') AND
times.calendar_month_desc IN (
'2000-09
',
'2000-10
')
AND country_id IN (
'UK
',
'US
')
GROUP BY
GROUPING SETS (country_id, cust_state_province),
GROUPING SETS (calendar_year, calendar_quarter_desc);
This statement results in the computation of groupings:
country_id
, year
), (country_id
, calendar_quarter_desc
), (cust_state_province
, year
) and (cust_state_province
, calendar_quarter_desc
)One of the most important uses for concatenated groupings is to generate the aggregates needed for a hierarchical cube of data. A hierarchical cube is a data set where the data is aggregated along the rollup hierarchy of each of its dimensions and these aggregations are combined across dimensions. It includes the typical set of aggregations needed for business intelligence queries. By using concatenated groupings, you can generate all the aggregations needed by a hierarchical cube with just n ROLLUP
s (where n is the number of dimensions), and avoid generating unwanted aggregations.
Consider just three of the dimensions in the sh
sample schema data set, each of which has a multilevel hierarchy:
year
, quarter
, month
, day
(week
is in a separate hierarchy)category
, subcategory
, prod_name
region
, subregion
, country
, state
, city
This data is represented using a column for each level of the hierarchies, creating a total of twelve columns for dimensions, plus the columns holding sales figures.
For our business intelligence needs, we would like to calculate and store certain aggregates of the various combinations of dimensions. In Example 18-13, we create the aggregates for all levels, except for "day", which would create too many rows. In particular, we want to use ROLLUP
within each dimension to generate useful aggregates. Once we have the ROLLUP
-based aggregates within each dimension, we want to combine them with the other dimensions. This will generate our hierarchical cube. Note that this is not at all the same as a CUBE
using all twelve of the dimension columns: that would create 2 to the 12th power (4,096) aggregation groups, of which we need only a small fraction. Concatenated grouping sets make it easy to generate exactly the aggregations we need. Example 18-13 shows where a GROUP
BY
clause is needed.
SELECT calendar_year, calendar_quarter_desc, calendar_month_desc, country_region, country_subregion, countries.country_id, cust_state_province, cust_city, prod_cat_desc, prod_subcat_desc, prod_name, TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$ FROM sales, customers, times, channels, countries, products WHERE sales.time_id=times.time_id AND sales.cust_id=customers.cust_id AND sales.channel_id= channels.channel_id AND sales.prod_id=products.prod_id AND customers.country_id=countries.country_id AND channels.channel_desc IN ('Direct Sales', 'Internet') AND times.calendar_month_desc IN ('2000-09', '2000-10') AND prod_name IN ('Ruckpart Eclipse', 'Ukko Plain Gortex Boot') AND countries.country_id IN ('UK', 'US') GROUP BY ROLLUP(calendar_year, calendar_quarter_desc, calendar_month_desc), ROLLUP(country_region, country_subregion, countries.country_id, cust_state_province, cust_city), ROLLUP(prod_cat_desc, prod_subcat_desc, prod_name);
The ROLLUPs
in the GROUP
BY
specification generate the following groups, four for each dimension.
The concatenated grouping sets specified in the previous SQL will take the ROLLUP
aggregations listed in the table and perform a cross-product on them. The cross-product will create the 96 (4x4x6) aggregate groups needed for a hierarchical cube of the data. There are major advantages in using three ROLLUP
expressions to replace what would otherwise require 96 grouping set expressions: the concise SQL is far less error-prone to develop and far easier to maintain, and it enables much better query optimization. You can picture how a cube with more dimensions and more levels would make the use of concatenated groupings even more advantageous.
This section discusses the following topics.
The ROLLUP
and CUBE
extensions work independently of any hierarchy metadata in your system. Their calculations are based entirely on the columns specified in the SELECT
statement in which they appear. This approach enables CUBE
and ROLLUP
to be used whether or not hierarchy metadata is available. The simplest way to handle levels in hierarchical dimensions is by using the ROLLUP
extension and indicating levels explicitly through separate columns. The following code shows a simple example of this with months rolled up to quarters and quarters rolled up to years.
SELECT calendar_year, calendar_quarter_number, calendar_month_number, SUM(amount_sold) FROM sales, times, products, customers WHERE sales.time_id=times.time_id AND sales.prod_id=products.prod_id AND sales.cust_id=customers.cust_id AND prod_name IN ('Ruckpart Eclipse', 'Ukko Plain Gortex Boot') AND country_id = 'US' AND calendar_year=1999 GROUP BY ROLLUP(calendar_year, calendar_quarter_number, calendar_month_number); CALENDAR_YEAR CALENDAR_QUARTER_NUMBER CALENDAR_MONTH_NUMBER SUM(AMOUNT_SOLD) ------------- ----------------------- --------------------- ---------------- 1999 1 2 79652 1999 1 3 156738 1999 1 236390 1999 2 4 97802 1999 2 5 116282 1999 2 6 85914 1999 2 299998 1999 3 7 113256 1999 3 8 79270 1999 3 9 103200 1999 3 295726 1999 832114 832114
CUBE
, ROLLUP
, and GROUPING
SETS
do not restrict the GROUP
BY
clause column capacity. The GROUP
BY
clause, with or without the extensions, can work with up to 255 columns. However, the combinatorial explosion of CUBE
makes it unwise to specify a large number of columns with the CUBE
extension. Consider that a 20-column list for CUBE
would create 2 to the 20 combinations in the result set. A very large CUBE
list could strain system resources, so any such query needs to be tested carefully for performance and the load it places on the system.
The HAVING
clause of SELECT
statements is unaffected by the use of GROUP
BY
. Note that the conditions specified in the HAVING
clause apply to both the subtotal and non-subtotal rows of the result set. In some cases a query may need to exclude the subtotal rows or the non-subtotal rows from the HAVING
clause. This can be achieved by using a GROUPING
or GROUPING_ID
function together with the HAVING
clause. See Example 18-8 and its associated SQL statement for an example.
In many cases, a query needs to order the rows in a certain way, and this is done with the ORDER
BY
clause. The ORDER
BY
clause of a SELECT
statement is unaffected by the use of GROUP
BY
, since the ORDER
BY
clause is applied after the GROUP
BY
calculations are complete.
Note that the ORDER
BY
specification makes no distinction between aggregate and non-aggregate rows of the result set. For instance, you might wish to list sales figures in declining order, but still have the subtotals at the end of each group. Simply ordering sales figures in descending sequence will not be sufficient, since that will place the subtotals (the largest values) at the start of each group. Therefore, it is essential that the columns in the ORDER
BY
clause include columns that differentiate aggregate from non-aggregate columns. This requirement means that queries using ORDER
BY
along with aggregation extensions to GROUP
BY
will generally need to use one or more of the GROUPING
functions.
The examples in this chapter show ROLLUP
and CUBE
used with the SUM
function. While this is the most common type of aggregation, these extensions can also be used with all other functions available to the GROUP
BY
clause, for example, COUNT
, AVG
, MIN
, MAX
, STDDEV
, and VARIANCE
. COUNT
, which is often needed in cross-tabular analyses, is likely to be the second most commonly used function.
The WITH
clause (formally known as subquery_factoring_clause
) enables you to reuse the same query block in a SELECT
statement when it occurs more than once within a complex query. WITH
is a part of the SQL-99 standard. This is particularly useful when a query has multiple references to the same query block and there are joins and aggregations. Using the WITH
clause, Oracle retrieves the results of a query block and stores them in the user's temporary tablespace. Note that Oracle9i does not support recursive use of the WITH
clause.
The following query is an example of where you can improve performance and write SQL more simply by using the WITH
clause. The query calculates the sum of sales for each channel and holds it under the name channel_summary
. Then it checks each channel's sales total to see if any channel's sales are greater than one third of the total sales. By using the WITH
clause, the channel_summary
data is calculated just once, avoiding an extra scan through the large sales table.
WITH channel_summary AS (
SELECT channels.channel_desc, SUM(amount_sold) AS channel_total
FROM sales, channels
WHERE sales.channel_id = channels.channel_id
GROUP BY channels.channel_desc
)
SELECT channel_desc, channel_total
FROM channel_summary
WHERE channel_total > (
SELECT SUM(channel_total) * 1/3
FROM channel_summary);
CHANNEL_DESC CHANNEL_TOTAL -------------------- ------------- Direct Sales 312829530
Note that this example could also be performed efficiently using the reporting aggregate functions described in Chapter 19, "SQL for Analysis in Data Warehouses".
See Also:
Oracle9i SQL Reference for more information |
|
Copyright © 1996, 2002 Oracle Corporation. All Rights Reserved. |
|